
VÁLVULA REDUCTORA DE PRESIÓN TOP PILOT

Modelo IR-22T-55-3W-X

Las válvulas de control Reductoras de presión Top Pilot de BERMAD con control por solenoide ofrecen un rendimiento óptimo, un diseño compacto y una operación intuitiva tipo «plug & play» gracias a un innovador piloto integrado, equipado con un dial de ajuste de alta resolución para una calibración fácil, rápida y precisa. El modelo IR-22T-55-3W-X reduce la presión aguas arriba más alta a una presión aguas abajo calibrada y constante, independientemente de las fluctuaciones del flujo, y se abre por completo cuando la presión de la línea cae por debajo del valor establecido. La válvula se abre y cierra en respuesta a una señal eléctrica.

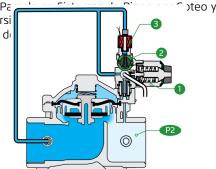
* ¡Esta válvula está diseñada solo para uso en riego y no para otros usos! La garantía del fabricante se

limita únicamente al uso permitido.

- [1] El modelo IR-22T-55-3W-X de BERMAD establece una zona de presión reducida, protegiendo los laterales y la línea de distribución.
- [2] Hidrómetro BERMAD modelo IR-900-M0-Z
- [3] Válvula de aire combinada modelo IR-C10
- [4] RTU- unidad terminal remota

Operación:

El piloto de reductor de presión [1] ordena que la válvula se cierre gradualmente si la presión aguas abajo [P2] supera el valor establecido y que se abra completamente cuando cae por debajo de dicho valor. El selector Trio integrado [2] permite la anulación manual de cierre y apertura o la operación automática, en la cual el solenoide 📵 ordena que la válvula se abra o cierre en respuesta a una señal eléctrica.



Características y ventajas

- Accionado por la presión de la línea, encendido/apagado controlado hidráulicamente
 - Protege los sistemas aguas abajo
 - Se abre completamente en caso de caída de la presión
- Piloto integrado de 3 vías: diseño fácil de usar
 - Perilla de ajuste y escala de alta resolución para una fácil calibración sin ningún manómetro
 - Solución compacta "del tamaño de una caja"
 - El control de solenoide se agrega o quita fácilmente
 - Especialmente adecuado para todos los tamaños de hasta 3 pulgadas
- Apertura y cierre suaves de la válvula
 - Regulación precisa y estable
 - Requisitos de baja presión de operación
- Válvula de globo compuesta hidroeficiente
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Alta capacidad de flujo
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
- Diafragma flexible unificado y tapon guiado
 - Excelente regulación con caudales bajos
 - Previene la erosión y distorsión del diafragma
- Diafragma totalmente equilibrado con soporte periférico
 - Baja presión de accionamiento

Aplicaciones típicas

- Sistemas de riego automatizados
- Sistemas sujetos a fluctuaciones en la presión de suministro
- Válvulas Pa por Aspersi
- Sistemas de

Datos técnicos

Presión nominal: 10 bar

Presiones de trabajo: 0.7-10 bar

Materiales

Cuerpo y tapa:

Poliamida 6 y 30% GF

Diafragma:

NBR

Resorte (muelle): Acero inoxidable

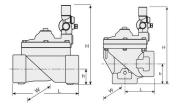
Accesorios del circuito de control

Piloto Reductor: Top Pilot Gama de resorte de piloto:

Resorte	Color del	rango de
(muelle)	resorte	ajuste
Black		0.8-6 bar

• H2 para escala de barras

• J2 para escala psi


Tuberías y conectores:

Polietileno

*Para otros solenoides, consulte a <u>BERMAD</u>

Especificaciones técnicas

Consulte la página completa de ingeniería de **BERMAD** acerca de otras formas y tipos de conectores.

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	1.29	160	249	35	148	0.072	37
1½" ; DN40	Angular	Rosca	1.24	80	250	40	148	0.072	41
2" ; DN50	Globo	Rosca	1.39	170	255	38	148	0.072	47
2" ; DN50	Angular	Rosca	1.2	85	274	60	148	0.072	52

VDCC = Volumen de descarga (desplazamiento) en la cámara de control

Características adicionales

Código	Descripción	Rango de tamaños
5	Toma de presión de plástico	1½"-2" / DN40-50
7	Toma de presión de plástico	1½"-2" / DN40-50

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com