

VÁLVULA REDUCTORA DE PRESIÓN TOP PILOT

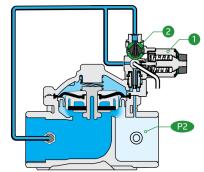
Modelo IR-22T-3W-X

Las válvulas de control reductoras de presión Top Pilot de BERMAD ofrecen un rendimiento óptimo, un diseño compacto y una operación intuitiva tipo «plug & play» gracias a un piloto integrado innovador, equipado con un dial de ajuste de alta resolución para una calibración fácil, rápida y precisa. El Modelo IR-22T-3W-X reduce la presión aguas arriba más alta a una presión aquas abajo calibrada y constante, sin verse afectada por fluctuaciones de caudal, y se abre completamente cuando la presión de la línea cae por debajo del valor establecido.

* ¡Esta válvula está diseñada solo para uso en riego y no para otros usos! La garantía del fabricante se limita únicamente al uso permitido

- [1] El modelo IR-22T-3W-X de BERMAD establece una zona de presión reducida, protegiendo los laterales y la línea de distribución.
- [2] Hidrómetro BERMAD modelo IR-900-M0-Z
- [3] Válvula de aire combinada modelo IR-C10
- [4] RTU- unidad terminal remota

Operación:


El piloto reductor de presión 间 ordena a la válvula que se cierre gradualmente si la presión aguas abajo [P2] supera el valor establecido y que se abra completamente cuando caiga por debajo de dicho valor. El selector Trio integrado [2] permite la anulación manual de cierre y apertura.

Características y ventajas

- Accionado por la presión de la línea, encendido/apagado controlado hidráulicamente
 - Protege los sistemas aguas abajo
 - Se abre completamente en caso de caída de la presión
- Piloto integrado de 3 vías: diseño fácil de usar
 - Perilla de ajuste y escala de alta resolución para una fácil calibración sin ningún manómetro
 - Solución compacta "del tamaño de una caja"
 - El control de solenoide se agrega o quita fácilmente
 - Especialmente adecuado para todos los tamaños de hasta 3 pulgadas
- Apertura y cierre suaves de la válvula
 - Regulación precisa y estable
 - Requisitos de baja presión de operación
- Válvula de globo compuesta hidroeficiente
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Alta capacidad de flujo
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
- Diafragma flexible unificado y tapon guiado
 - Excelente regulación con caudales bajos
 - Previene la erosión y distorsión del diafragma
- Diafragma totalmente equilibrado con soporte periférico
 - Baja presión de accionamiento

Aplicaciones típicas

- Sistemas sujetos a fluctuaciones en la presión de suministro
- Válvulas Parcela en Sistemas de Riego por Goteo y por Aspersión
- Sistemas de riego que ahorran energía

Reductoras de presión

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

Especificaciones técnicas

Consulte la página completa de ingeniería de **BERMAD** acerca de otras formas y tipos de conectores.

0.7-10 bar

Materiales

Cuerpo y tapa:

Poliamida 6 y 30% GF

Diafragma:

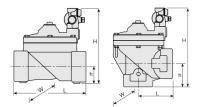
NBR

Resorte (muelle):

Acero inoxidable

Accesorios del circuito de control

Piloto Reductor: Top Pilot


Gama de resorte de piloto:

Resorte	Color del	rango de
(muelle)	resorte	ajuste
Black		0.8-6 bar

• H2 para escala de barras

• J2 para escala psi

Tuberías y conectores: Polietileno

L (mm) H (mm) h (mm) CCDV (Lit) ΚV 1½"; DN40 Globo Rosca 1.18 160 217 35 148 0.072 37 1½"; DN40 Angular Rosca 1.13 80 216 40 148 0.072 41 2"; DN50 Globo Rosca 1.28 170 210 38 148 0.072 47 2"; DN50 Angular Rosca 1.09 85 236 60 148 0.072 52

VDCC = Volumen de descarga (desplazamiento) en la cámara de control

Características adicionales

Código	Descripción	Rango de tamaños
5	Toma de presión de plástico	1½"-2" / DN40-50
7	Toma de presión de plástico	1½"-2" / DN40-50
55	Con control de solenoide	1½"-2" / DN40-50

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h @ \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com