

VANNE PILOTE DE RÉDUCTION DE PRESSION SUPÉRIEURE

Modèle IR-22T-2W

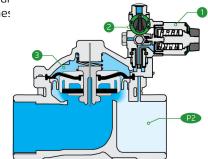
Les vannes pilotes supérieures de régulation de la pression de BERMAD offrent des performances optimales, une conception compacte et un fonctionnement prêt à l'emploi intuitif, grâce à un pilote intégré innovant, équipé d'un cadran de réglage haute résolution pour un étalonnage facile, rapide et précis. Le Modèle IR-22T-2W réduit la pression amont plus élevée à une pression aval constante calibrée, quelles que soient les fluctuations du débit ; et s'ouvre lorsque la pression de la conduite tombe en dessous du réglage.

*Cette vanne est conçue pour l'irrigation uniquement et non pour d'autres utilisations! La garantie du fabricant est limitée à l'utilisation autorisée uniquement.

- [1] Le Modèle IR-22T-2W de BERMAD établit une zone de pression réduite, protégeant les lignes latérales et la ligne de distribution.
- [2] Vanne d'air combinée modèle IR-C10
- [3] Vanne d'air combinée modèle IR-C10

Fonctionnement:

Le pilote de réduction de la pression [1] restreint le débit de régulation, ce qui entraîne la fermeture de la vanne si la pression en aval [P2] dépasse le réglage et s'ouvre lorsqu'elle descend en dessous du réglage. Le sélecteur trio intégré [2] permet une commande manuelle de fermeture et d'ouverture ou une commande hydraulique automatique, dans laquelle le pilote connecte la chambre de commande de la vanne 3 à la pression de la conduite pour accélérer, fermer la vanne ou la ventiler par le biais du pilote pour ouvrir la


Caractéristiques et avantages

- Commande hydraulique par pression de ligne, marche/arrêt
 - Protège les systèmes en aval
- Pilote intégré bidirectionnel Conception conviviale
 - Bouton de réglage et échelle haute résolution pour un étalonnage facile sans manomètre
 - Solution compacte « taille boîte »
 - Commande interne autonettoyante Pas de tubes externes
 - La commande par solénoïde est facile à ajouter ou à retirer
- Ouverture et fermeture fluides de la vanne
 - Régulation précise et stable
 - Exigences de faible pression de fonctionnement
- Vanne à clapet composite à haut rendement hydraulique
 - Voie d'écoulement dégagée
 - Une seule pièce mobile
 - Capacité de débit élevée
 - Très durable, résistant aux produits chimiques et à la cavitation
- Diaphragme flexible unitisé et bouchon quidé
 - Excellentes performances de régulation à faibles débits
 - Empêche l'érosion et la distorsion du diaphragme
- Diaphragme entièrement soutenu & équilibré
 - Nécessite une faible pression d'actionnement

Applications types

- Systèmes soumis à une pression d'alimentation variable
- Vannes pilotes dans les systèmes d'irrigation goutte à goutte et gicleur

Tubes et raccords:

Polyéthylène et

polypropylène

Données techniques

Pression nominale:

10 bar

Plage de pression de fonctionnement:

Données techniques

Pour d'autres types de raccords d'extrémité,

0.7-10 bar

Matériaux

Corps et couvercle:

Acier inoxydable

Polyamide 6 & 30% GF

Membrane:

NBR

Ressort:

Accessoires circuit de contrôle

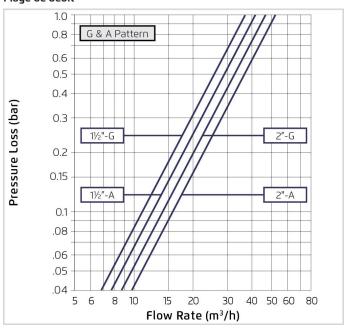
Pilote de réduction de pression: Top Pilot

Plage de pression du pilote:

riage de pression da phote.						
	Ressort	Couleur du ressort	Plage de réglage			
	Black		0.8-6 bar			

- H2 pour l'échelle des barres
- J2 pour l'échelle psi

Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½"; DN40	Globe	Taraudée	1.18	160	217	35	148	0.072	37
1½"; DN40	Angle	Taraudée	1.13	80	216	40	148	0.072	41
2"; DN50	Globe	Taraudée	1.28	170	210	38	148	0.072	47
2"; DN50	Angle	Taraudée	1.09	85	236	60	148	0.072	52


CCDV = Volume de déplacement de la chambre de contrôle

veuillez consulter la page d'ingénierie complète de **BERMAD**.

Caractéristiques supplémentaires

	Code	Description	Tailles disponibles
	5	Prise pression plastique	1½"-2" / DN40-50

Plage de débit

Circuit à 2 voies « Perte de charge ajoutée » (pour « V » inférieur à 2 m/s):

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{KV}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd