

VÁLVULAS SUSTENTADORA DE PRESSÃO

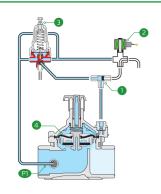
Modelo IR-230-55-3W-MX

O modelo IR-230-55-MX da BERMAD é uma válvula de controle operada hidraulicamente e acionada por diafragma que sustenta a pressão mínima predefinida do fluxo de entrada (retorno) e abre totalmente quando a pressão de linha excede a configuração. A válvula abre ou fecha em resposta a um sinal elétrico.

*Esta válvula foi projetada somente para uso em irrigação e não para outros usos! A garantia do fabricante é limitada somente ao uso permitido.

- [1] O modelo IR-230-55-MX da BERMAD é aberto em resposta a um sinal elétrico, sustenta a pressão do sistema de alimentação evitando o esvaziamento e controla o abastecimento das linhas de distri
- [2] Válvula Hidráulica de Retrolavagem de Filtro Modelo IR-350
- [3] Válvula Ventosa Combinada Modelo C10
- [4] Corta-Vácuo

Benefícios e Características


- Controlada Hidraulicamente, Acionada por Pressão de Linha
 - Sustenta a pressão de linha do fluxo de entrada, controlando o abastecimento do sistema
 - Alivia o excesso de pressão, protegendo a bomba e o sistema
- Válvula Globo Hidroeficiente de Compósitos
 - Percurso de fluxo sem obstruções
 - Peça móvel única
 - Alta capacidade de fluxo
 - Altamente durável, resistente a produtos químicos
- Diafragma Flexível Unificado e Obturador com Guia
 - Excelentes desempenhos de regulagem em baixo fluxo
 - Evita a erosão e distorção do diafragma
- Diafragma Totalmente Suportado e Balanceado
 - Requer baixa pressão de atuação
- Design Fácil de Usar
 - Inspeção e Serviço Simples em Linha

Aplicações Típicas

- Sistemas de Irrigação Automatizados
- Priorização da Zona de Pressão
- Irrigação de Estufas
- Estações de Filtragem
- Controle de Sistemas de Fertilização

Operação:

A Válvula Corrediça (Shuttle) 🚺 conecta hidraulicamente o Solenoide 2 ou o Piloto Sustentador de Pressão (PSP) 3 com a Câmara de Controle da Válvula [4]. O Piloto Sustentador de Pressão (PSP) comanda a válvula para que seja fechada por estrangulamento, caso a Pressão do Fluxo de Entrada [P1] caia abaixo da configuração e abra totalmente quando a pressão [P1] aumentar acima da configuração. A válvula abre ou fecha em resposta a um sinal elétrico.

Dados Técnicos

Classe de Pressão:

10 bar

Faixa de Pressão Operacional: 0.7-10 bar

Materiais

Corpo e Tampa:

Poliamida 6 e 30% GF

Diafragma:

NBR **Mola:**

Aço inox

Acessórios do Circuito de Controle

Piloto PS: PC-SHARP-X-P

Faixa da Mola do Piloto:

Mola	Cor da Mola	Faixa de ajuste		
J		0.2-1.7 bar		
K		0.5-3.0 bar		
N		0.8-6.5 bar		
V		1.0-10.0 bar		

Mola padrão - marcada em negrito

Tubulação e Conexões:

Polietileno

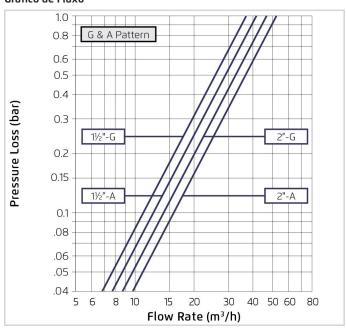
Solenoide AC:

S-390-T-2W

Solenoide tipo Latch CC:

S-390-T-2W

Especificações Técnicas Para outros tipos de conexões de encaixe, consulte a página de engenharia completa da BERMAD.


Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	KV
1½"; DN40	Globo	Rosqueado	1	160	180	35	125	0.072	37
1½"; DN40	Angular	Rosqueado	0.95	80	190	40	125	0.072	41
2"; DN50	Globo	Rosqueado	1.1	170	190	38	125	0.072	47
2" ; DN50	Angular	Rosqueado	0.91	85	210	60	125	0.072	52

CCDV = Volume de Deslocamento da Câmara de Controle

Características Adicionais

Código	Descrição	Faixa de Tamanho
5	Ponto de Teste Plástico	1½"-2" / DN40-50

Gráfico de Fluxo

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros