

VÁLVULA SOSTENEDORA DE PRESIÓN

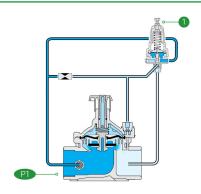
Modelo IR-230-2W-M

La válvula sostenedora de presión BERMAD es una válvula de control operada hidráulicamente y accionada por diafragma que mantiene una presión mínima preestablecida aguas arriba (retropresión). Se abre o cierra en respuesta a una orden de presión remota. Cuando se instala fuera de línea, el modelo IR-230-2W-M de BERMAD alivia la presión de la línea que excede la presión preestablecida.

*¡Esta válvula está destinada únicamente para uso en riego y no para otros usos! La garantía del fabricante está limitada únicamente al uso permitido.

- [1] El modelo IR-230-2W-M de BERMAD protege la bomba contra la sobrecarga y la cavitación, evita el vaciado de la línea principal y controla el llenado del sistema.
- [2] Válvula hidráulica de retrolavado de filtro modelo IR-350
- [3] Válvula de aire combinada modelo IR-C10
- [4] Rompedor de vacío

Características y ventajas


- Accionado por la presión de línea, controlado hidráulicamente
 - Mantiene la presión de la línea aguas arriba, controlando el llenado del sistema
 - Eliminael exceso de presión protegiendo la bomba y el sistema
- Válvula de globo compuesta hidroeficiente
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Alta capacidad de flujo
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
- Diafragma flexible unificado y tapon guiado
 - Excelente regulación con caudales bajos
 - Previene la erosión y distorsión del diafragma
- Diafragma totalmente equilibrado con soporte periférico
 - Baja presión de accionamiento
- Diseño de facil manejo
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Priorización de zonas de presión
- Riego de invernaderos
- Estaciones de filtración
- Control de los sistemas de fertilización

Operación:

El piloto sostenedor de presión [] ordena que la válvula se cierre gradualmente si la presión aguas arriba [P] cae por debajo del ajuste del piloto, y que se module abierta cuando suba por encima del ajuste del piloto.

Serie 200 Sostenedora de presión

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

Especificaciones técnicas

Consulte la página completa de ingeniería de **BERMAD** acerca de otras formas y tipos de conectores.

0.7-10 bar

Materiales

Cuerpo y tapa:

Poliamida 6 y 30% GF

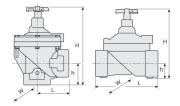
Diafragma:

NBR

Resorte (muelle):

Acero inoxidable

Accesorios del circuito de control

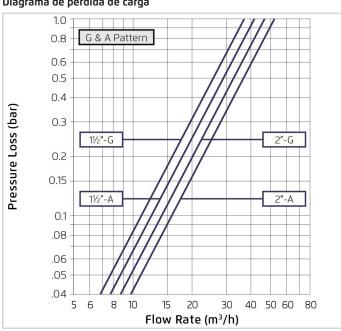

Piloto Sostenedor: PC-30-A-

Gama de resorte de piloto:

Resorte (muelle)		rango de ajuste		
N	Natural	0.8-6.5 bar		
V	Azul y blanco	1.0-10.0 bar		

Resorte estándar - marcado en negrita

Tuberías y conectores: Polietileno


Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	ΚV
1½"; DN40	Globo	Rosca	1	160	180	35	125	0.072	37
1½"; DN40	Angular	Rosca	0.95	80	190	40	125	0.072	41
2" ; DN50	Globo	Rosca	1.1	170	190	38	125	0.072	47
2" : DN50	Angular	Rosca	0.91	85	210	60	125	0.072	52

VDCC = Volumen de descarga (desplazamiento) en la cámara de control

Características adicionales

Código	Descripción	Rango de tamaños
М	Cierre mecánico	1½"-2" / DN40-50
5	Toma de presión de plástico	1½"-2" / DN40-50

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s):

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com