

VALVOLA DI SOSTEGNO DELLA PRESSU

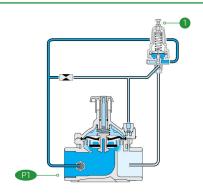
Modello IR-230-2W-M

La valvola di mantenimento della pressione BERMAD è una valvola di controllo a diaframma azionata idraulicamente che mantiene la pressione minima preimpostata a monte (contropressione). Si apre o si chiude in risposta a un comando di pressione remoto. Quando installata offline, la valvola BERMAD modello IR-230-2W-M scarica la pressione di linea in eccesso rispetto a quella preimpostata.

*Questa valvola è destinata esclusivamente all'uso irriquo e non ad altri usi! La garanzia del produttore è limitata all'uso consentito.

- [1] Il modello BERMAD IR-230-2W-M protegge la pompa da sovraccarico e cavitazione, impedisce lo svuotamento della linea principale e controlla il riempimento del sistema.
- [2] Valvola idraulica con filtro controlavaggio Modello IR-350
- [3] Valvola dell'Aria Combinata Modello IR-C10
- [4] Sfiato rompivuoto, PN10

Caratteristiche e vantaggi


- Azionamento a pressione di linea, controllo idraulico
 - Mantiene la pressione della linea a monte, controllando il riempimento del sistema.
 - Allevia la pressione eccessiva proteggendo pompa e sistema
- Valvola a globo idro-efficiente in materiale composito
 - Percorso di flusso senza ostacoli
 - Parte mobile singola
 - Elevata capacità di flusso
 - Altamente durevole, resistente agli agenti chimici e alla cavitazione
- Diaframma Flessibile Unico con Attuatore Guidato
 - Eccellenti prestazioni di regolazione del flusso ridotto
 - Previene l'erosione e la distorsione del diaframma
- Diaframma completamente supportato e bilanciato
 - Richiede una bassa pressione di esercizio
- Design intuitivo
 - Ispezione e assistenza in linea semplici

Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Assegnazione delle priorità alle zone di pressione
- Irrigazione delle serre
- Stazioni di filtraggio
- Controllo dei sistemi di fertilizzazione

Operazioni:

Il pilota di mantenimento della pressione 间 comanda alla valvola a farfalla di chiudersi quando la pressione a monte [P1] scende al di sotto del valore impostato dal pilota e di aprirsi quando sale al di sopra del valore impostato dal pilota.

Dati Tecnici

Pressione d'esercizio:

10 bar

Intervallo di Pressione Operativa:

0.7-10 bar

Materiali

Corpo e Coperchio:

Poliammide 6 e 30% VF

Diaframma:

NBR

Molla: Acciaio Inox

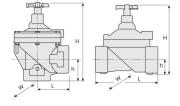
Accessori del Circuito

Pilota PSV: PC-30-A-P Range molla del pilota:

Molla	Colore Molla	Range di Regolazione
N	Naturale	0.8-6.5 bar
٧	Blu & Bianco	1.0-10.0 bar

Molla standard - indicata in grassetto _x000D_

Tubi e raccordi:

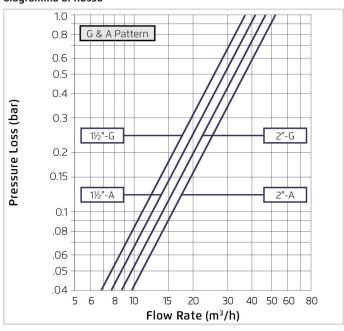

Polietilene e poliprolpilene

Specifiche Tecniche

Per altri tipi di connessioni terminali,

x000D Fare riferimento alla pagina di progettazione completa di BERMAD.

x000D


Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Globo	Filettato	1	160	180	35	125	0.072	37
1½"; DN40	Angolo	Filettato	0.95	80	190	40	125	0.072	41
2" ; DN50	Globo	Filettato	1.1	170	190	38	125	0.072	47
2"; DN50	Angolo	Filettato	0.91	85	210	60	125	0.072	52

CCDV = Volume di spostamento della camera di controllo

Caratteristiche Aggiuntive

Codice	Descrizione	Gamma di Dimensioni
М	Regolatore di flusso	1½"-2" / DN40-50
5	Per manometro plastica	1½"-2" / DN40-50

diagramma di flusso

Circuito a 2 vie "Perdita di Carico Aggiunta" (per "V" inferiore a 2 m/s): 0,3 bar

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com