

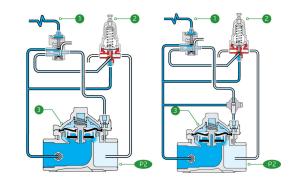
VÁLVULA REDUCTORA DE PRESIÓN

Modelo IR-220-54-3W-X

La válvula reductora de presión normalmente cerrada de BERMAD con control de relé hidráulico es una válvula de control operada hidráulicamente y accionada por diafragma que reduce la presión más alta aguas arriba a una presión constante más baja aguas abajo, independientemente de la fluctuaciones de la demanda, y se abre completamente cuando la presión de la línea cae. Es una válvula normalmente cerrada que se abre en respuesta a una orden de presión remota y se cierra en ausencia de dicha orden. *¡Esta válvula está destinada únicamente para uso en riego y no para otros usos! La garantía del fabricante está limitada únicamente al uso permitido.

- [1] El modelo IR-220-54-3W-X de BERMAD se abre ante una orden de aumento de presión y establece una zona de presión reducida que protege los laterales y la línea de distribución.
- [2] Válvula de aire combinada modelo IR-C10
- [3] Hidrómetro BERMAD modelo IR-900-M0-Z

Características y ventajas


- Accionado por la presión de línea, controlado hidráulicamente
 - Control de presión hidráulica, normalmente cerrado
 - Se cierra cuando falla la presión del comando
- Protege los sistemas aguas abajo
 - Amplifica y transmite comandos remotos débiles
 - Se abre completamente en caso de caída de la presión
- Válvula de globo compuesta hidroeficiente
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Alta capacidad de flujo
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
- Diafragma flexible unificado y tapon guiado
 - Excelente regulación con caudales bajos
 - Previene la erosión y distorsión del diafragma
- Diafragma totalmente equilibrado con soporte periférico
 - Baja presión de accionamiento
- Diseño de facil manejo
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Sistemas de goteo
- Sistemas reductores de presión
- Sistemas sujetos a fluctuaciones en la presión de suministro
- Sistemas de riego que ahorran energía

Operación:

La válvula relé hidráulica de 3 vías (3W-HRV) 1 conecta hidráulicamente el piloto reductor de presión (PRP) 2 a la cámara de control de la válvula 3 El PRP ordena que la válvula se cierre gradualmente en caso de que la presión aguas abajo 2 supere el valor establecido del piloto y que se abra completamente cuando caiga por debajo de dicho valor. La 3W-HRV se conmuta en respuesta a una orden de caída de presión, dirigiendo la presión de la línea hacia la cámara de control, lo que hace que la válvula principal se cierre. El 3W-HRV también cuenta con cierre manual local

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.7-10 bar

Materiales

Cuerpo y tapa:

Poliamida 6 y 30% GF

Diafragma:

NBR

Resorte (muelle):

Acero inoxidable

Accesorios del circuito de control

Piloto Reductor: PC-SHARP-

X-P

Gama de resorte de piloto:

domo de resorte de piloto.						
Resorte (muelle)	Color del resorte	rango de ajuste				
J	Verde	0.2-1.7 bar				
K	Gris	0.5-3.0 bar				
N	Natural	0.8-6.5 bar				
V	Azul y blanco	1.0-10.0 bar				

Tuberías y conectores:

Polietileno

*Para otros pilotos, sírvase contactar a <u>BERMAD</u>

*3W-HRV;

- Resorte estándar 0-10 m'
- Opcional 10-20 m'

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

Resorte estándar - marcado en	negrita	
Nesorie estanos, moresos en	H	H
	r	

Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	KV
1½" ; DN40	Globo	Rosca	1	160	180	35	125	0.072	37
1½"; DN40	Angular	Rosca	0.95	80	190	40	125	0.072	41
2"; DN50	Globo	Rosca	1.1	170	190	38	125	0.072	47
2"; DN50	Angular	Rosca	0.91	85	210	60	125	0.072	52

VDCC = Volumen de descarga (desplazamiento) en la cámara de control

Características adicionales

Código	Descripción	Rango de tamaños
М	Cierre mecánico	1½"-2" / DN40-50
5	Toma de presión de plástico	1½"-2" / DN40-50
Z	Selector manual	1½"-2" / DN40-50

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com