

VANNE DE REDUCTION DE PRESSION

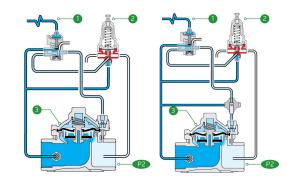
Modèle IR-220-54-3W-X

limitée à l'utilisation autorisée

La vanne de réduction de pression normalement fermée BERMAD avec commande par relais hydraulique est une vanne de régulation à commande hydraulique et à membrane qui réduit la pression en amont plus élevée afin de maintenir une pression en aval constante, indépendamment des fluctuations de la demande, et s'ouvre complètement en cas de chute de pression dans la conduite. Il s'agit d'une vanne normalement fermée qui s'ouvre en réponse à une commande de pression à distance et se ferme en l'absence de cette commande. *Cette vanne est conçue pour être utilisée uniquement à des fins d'irrigation et ne doit pas être utilisée à d'autres fins! La garantie du fabricant est

- [1] Le Modèle IR-220-54-3W-X de BERMAD s'ouvre sur commande d'augmentation de pression et établit une zone de pression réduite protégeant les lignes latérales et la ligne de distribution.
- [2] Vanne d'air combinée modèle IR-C10
- [3] Vanne d'air combinée modèle IR-C10

Caractéristiques et avantages


- Entraînement de pression de ligne, à commande hydraulique
 - Régulateur de pression hydraulique, normalement fermé
 - Se ferme en cas de défaillance de la pression de commande
- Protège les systèmes en aval
 - Amplifie et relaie les télécommandes faibles
 - S'ouvre complètement en cas de chute de pression
- Vanne à clapet composite à haut rendement hydraulique
 - Voie d'écoulement dégagée
 - Une seule pièce mobile
 - Capacité de débit élevée
 - Très durable, résistant aux produits chimiques et à la cavitation
- Diaphragme flexible unitisé et bouchon guidé
 - Excellentes performances de régulation à faibles débits
 - Empêche l'érosion et la distorsion du diaphragme
- Diaphragme entièrement soutenu & équilibré
 - Nécessite une faible pression d'actionnement
- Conception facile d'utilisation
 - Inspection et entretien simples en ligne

Applications types

- modernisation du pilotage des réseaux d'irrigation
- Systèmes d'égouttement
- Systèmes de réduction de pression
- Systèmes soumis à une pression d'alimentation variable
- Systèmes d'irrigation économes en énergie

Fonctionnement:

La vanne relais hydraulique à 3 voies (3W-HRV) 11 relie hydrauliquement le Pilote de Réduction de la Pression (PRP) [2] à la chambre de commande de la vanne 3. Le PRP commande à la soupape de fermer l'accélérateur si la pression aval [P2] dépasse le réglage pilote et de s'ouvrir complètement lorsqu'elle descend en dessous du réglage pilote. Le 3W-HRV commute sur commande de chute de pression, dirigeant la pression de la conduite vers la chambre de commande et provoquant ainsi la fermeture de la vanne principale. Le 3W-HRV dispose également d'une fermeture manuelle locale

IR-220-54-3W-Y

Données techniques

Pression nominale:

10 bar

Plage de pression de fonctionnement:

Données techniques

Pour d'autres types de raccords d'extrémité,

0.7-10 bar

Matériaux

Corps et couvercle:

Polyamide 6 & 30% GF

Membrane:

NBR

Ressort:

Acier inoxydable

Accessoires circuit de contrôle

Pilote de réduction de pression: PC-SHARP-X-P

Plage de pression du pilote:

Ressort	Couleur du ressort	Plage de réglage			
J	Vert	0.2-1.7 bar			
K	Gris	0.5-3.0 bar			
N	Naturel	0.8-6.5 bar			
V	Bleu et blanc	1.0-10.0 bar			
*Ressort standard – marqué en gras					

Tubes et raccords:

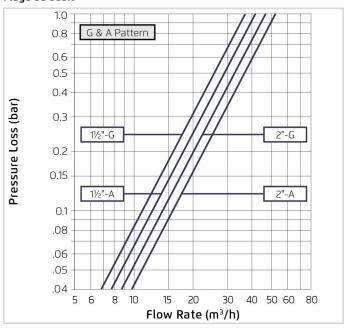
Polyéthylène et polypropylène

*Pour d'autres pilotes, veuillez consulter <u>BERMAD</u>

<u>*3W-HRV</u>;

- Ressort standard 0-10 m
- Optionnel 10-20 m

Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	κv
1½"; DN40	Globe	Taraudée	1	160	180	35	125	0.072	37
1½"; DN40	Angle	Taraudée	0.95	80	190	40	125	0.072	41
2" ; DN50	Globe	Taraudée	1.1	170	190	38	125	0.072	47
2" ; DN50	Angle	Taraudée	0.91	85	210	60	125	0.072	52


CCDV = Volume de déplacement de la chambre de contrôle

veuillez consulter la page d'ingénierie complète de **BERMAD**.

Caractéristiques supplémentaires

Code	Description	Tailles disponibles
М	Limiteur d'ouverture	1½"-2" / DN40-50
5	Prise pression plastique	1½"-2" / DN40-50
Z	Assemblage d'indicateur de position	1½"-2" / DN40-50

Plage de débit

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.