

VÁLVULA CONTROLADA POR SOLENOIDE

Modelo IR-21T-2W-M

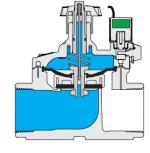
A Válvula Controlada por Solenoide de 2 Vias da BERMAD com seletor manual Trio (Aberto, Automático e Fechado) integrado é uma válvula de controle operada hidraulicamente e acionada por diafragma, com circuito de controle hidráulico interno de Alimentação e Sangria. O seletor Trio integrado permite abrir ou fechar, através da intervenção manual do sinal elétrico.

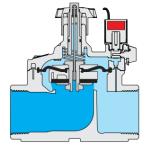
*Esta válvula foi projetada somente para uso em irrigação e não para outros usos! A garantia do fabricante é limitada somente ao uso permitido.

[1] O modelo IR-21T da BERMAD abre e fecha, sem de gotejamento, em resposta a um sinal elétrico, fazendo com que o solenoide abra ou feche o circuito hidráulico interno da válvula.

Benefícios e Características

- On/Off, Controlada Hidraulicamente, Acionada por Pressão de Linha
- Abertura e Fechamento Suaves da Válvula
 - Regulagem precisa e estável
 - Requisitos de baixa pressão operacional
- Válvula Globo Hidroeficiente de Compósitos
 - Percurso de fluxo sem obstruções
 - Peça móvel única
 - Alta capacidade de fluxo
 - Altamente durável, resistente a produtos químicos e cavitação
- Diafragma Flexível Unificado e Obturador com Guia
 - Evita a erosão e distorção do diafragma
- Diafragma Totalmente Suportado e Balanceado
 - Requer baixa pressão de atuação
- Design Fácil de Usar
 - Inspeção e Serviço Simples em Linha


Aplicações Típicas


- Sistemas de Irrigação Automatizados
- Sistemas de Gotejamento
- Irrigação de Estufas
- Sistemas Sujeitos a Diferentes Pressões de Alimentação
- Paisagismo
- Sistemas de Irrigação com Economia de Energia

Operação:

Posição Fechada: A restrição interna permite uma pressão da linha contínua na câmara de controle. O solenoide controla o fluxo de saída da câmara de controle. Quando o solenoide é fechado, a pressão é acumulada na câmara de controle e isso força o fechamento da válvula.

Posição Aberta: A abertura do solenoide libera mais fluxo da câmara de controle do que a restrição pode permitir. Isso faz com que a pressão acumulada na câmara de controle diminua, permitindo que a pressão de linha atue sobre o obturador para abrir a válvula.

On/Off

Dados Técnicos

Classe de Pressão:

10 bar

Faixa de Pressão Operacional: 0.7-10 bar

Materiais

Corpo e Tampa:

Poliamida 6 e 30% GF

Diafragma: **NBR**

Mola:

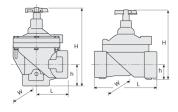
Aço inox

Acessórios do Circuito de Controle

Tubulação e Conexões:

Polietileno

Solenoide AC:

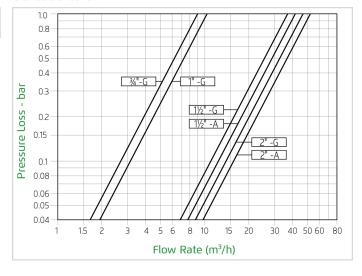

S-390-T-2W

Solenoide tipo Latch CC:

S-392-T-2W

Especificações Técnicas

Para outros tipos de conexões de encaixe, consulte a página de engenharia completa da **BERMAD**.


Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	κv
¾" ; DN20	Globo	Rosqueado	0.35	110	115	22	78	0.015	9
1" ; DN25	Globo	Rosqueado	0.33	110	115	22	78	0.015	9
1½"; DN40	Globo	Rosqueado	1	160	180	35	125	0.072	37
1½"; DN40	Angular	Rosqueado	0.95	80	190	40	125	0.072	41
2" ; DN50	Globo	Rosqueado	1.1	170	190	38	125	0.072	47
2" ; DN50	Angular	Rosqueado	0.91	85	210	60	125	0.072	52

CCDV = Volume de Deslocamento da Câmara de Controle

Características Adicionais

Código	Descrição	Faixa de Tamanho		
5	Ponto de Teste Plástico	1½"-2" / DN40-50		

Gráfico de Fluxo

Circuito de 2 Vias "Perda de Carga Adicionada" (para "V" abaixo de 2 m/s): 0,3

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h @ \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros