

VALVOLA CONTROLLATA A SOLENOIDE

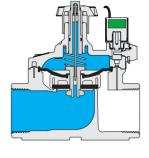
Modello IR-21T-2W-M

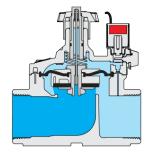
La valvola a solenoide a 2 vie BERMAD con selettore manuale di apertura-chiusura automatica integrato Trio è una valvola di controllo a diaframma azionata idraulicamente con circuito di controllo idraulico interno di alimentazione e spurgo. Il selettore integrato Trio consente l'apertura o la chiusura, escludendo manualmente il segnale elettrico. *Questa valvola è destinata esclusivamente all'uso irriquo e non ad altri usi! La garanzia del produttore è limitata all'uso consentito.

La valvola BERMAD modello IR-21T si apre e si chiude a tenuta stagna in risposta a un segnale elettrico, che aziona l'apertura o la chiusura del circuito idraulico interno della valvola tram

Caratteristiche e vantaggi

- Accensione/spegnimento azionato dalla pressione di linea, controllato idraulicamente
- Apertura e chiusura fluide della valvola
 - Regolazione precisa e stabile
 - Requisiti di bassa pressione di esercizio
- Valvola a globo idro-efficiente in materiale composito
 - Percorso di flusso senza ostacoli
 - Parte mobile singola
 - Elevata capacità di flusso
 - Altamente durevole, resistente agli agenti chimici e alla cavitazione
- Diaframma Flessibile Unico con Attuatore Guidato
 - Previene l'erosione e la distorsione del diaframma
- Diaframma completamente supportato e bilanciato
 - Richiede una bassa pressione di esercizio
- Design intuitivo
 - Ispezione e assistenza in linea semplici


Applicazioni tipiche


- Sistemi di irrigazione automatizzati
- Sistemi a goccia
- Irrigazione delle serre
- Sistemi Soggetti a Variazioni della Pressione di Alimentazione
- Paesaggio
- Sistemi di Irrigazione a Risparmio Energetico

Operazioni:

Posizione chiusa: la restrizione interna consente continuamente la pressione della linea nella camera di controllo. Il solenoide controlla il deflusso dalla camera di controllo. Quando il solenoide è chiuso, provoca l'accumulo di pressione nella camera di controllo, costringendo così la valvola a chiudersi.

Posizione aperta: l'apertura del solenoide rilascia più flusso dalla camera di controllo di quanto la restrizione possa consentire. Ciò causa una diminuzione della pressione accumulata nella camera di controllo, consentendo alla pressione di linea che agisce sul tappo di aprire la valvola

ID_21T_2\M_M

Dati Tecnici

Pressione d'esercizio:

10 bar

Intervallo di Pressione Operativa:

0.7-10 bar

Materiali

Corpo e Coperchio:

Poliammide 6 e 30% VF

Diaframma:

NBR

Molla: Acciaio Inox

Accessori del Circuito

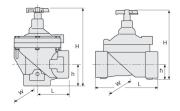
Tubi e raccordi:

Polietilene e poliprolpilene

Solenoide AC:

S-390-T-2W

Solenoide DC bistabile:


S-392-T-2W

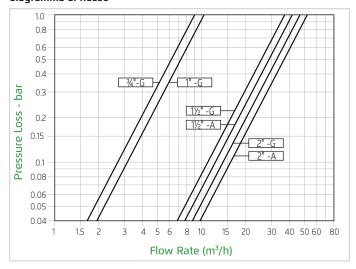
Specifiche Tecniche

Per altri tipi di connessioni terminali,

x000D Fare riferimento alla pagina di progettazione completa di <u>BERMAD</u>.

x000D

On/Off


Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
¾"; DN20	Globo	Filettato	0.35	110	115	22	78	0.015	9
1" ; DN25	Globo	Filettato	0.33	110	115	22	78	0.015	9
1½"; DN40	Globo	Filettato	1	160	180	35	125	0.072	37
1½"; DN40	Angolo	Filettato	0.95	80	190	40	125	0.072	41
2" ; DN50	Globo	Filettato	1.1	170	190	38	125	0.072	47
2"; DN50	Angolo	Filettato	0.91	85	210	60	125	0.072	52

CCDV = Volume di spostamento della camera di controllo

Caratteristiche Aggiuntive

Codice	Descrizione	Gamma di Dimensioni		
5	Per manometro plastica	1½"-2" / DN40-50		

diagramma di flusso

Circuito a 2 vie "Perdita di Carico Aggiunta" (per "V" inferiore a 2 m/s): 0,3 bar

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

