

SOLENOID CONTROLLED VALVE

With 2-Way Internal Controls & Trio Solenoid

Model IR-21T-N6-2W-M

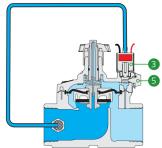
The BERMAD 2-Way Solenoid Controlled Valve with Trio integrated Open-Auto-Close manual selector, is a hydraulically operated, diaphragm actuated control valve with external & internal feed & internal bleed control loop. The BERMAD Model IR-21T-N6-2W-M opens and closes drip-tight in response to an electric signal, which causes the solenoid to open or close the valve's internal hydraulic loop.

*This valve is designated for irrigation use only and not for other uses! Manufacturer warranty is limited to the permitted use only.

[1] The BERMAD Model IR-21T-N6-2W-M opens and closes drip-tight in response to an electric signal, which causes the solenoid to open or close the valve's internal hydraulic loop.

Features & Benefits

- Line Pressure Driven, Electrically Controlled On/Off
- Smooth Valve Opening and Closing
 - Dry environments
 - Low operating pressure requirements
- Composite Hydro-Efficient Globe Valve
 - Unobstructed flow path
 - Single moving part
 - High flow capacity
 - Highly durable, chemical and cavitation resistant
- Unitized Flexible Diaphragm and Guided Plug
 - Prevents diaphragm erosion and distortion
- Fully Supported & Balanced Diaphragm
 - Requires low actuation pressure
- User-Friendly Design
 - Simple in-line inspection and service


Typical Applications

- Automated Irrigation Systems
- Greenhouses Irrigation
- Systems Subject to Varying Supply Pressure
- Landscape
- Energy Saving Irrigation Systems

Operation:

Closed Position: Line Pressure []] is applied to the Control Chamber [2] through the opened 3-Way Solenoid actuator [3] & through the internal restriction. This creates superior closing force that moves the Diaphragm Assembly [4] toward a closed position. Opened Position: energized the solenoid assembly [3], Closing the Solenoid causes it to discharge pressure from the Valve control chamber, thereby opening it. The Trio Override Handle [5] enables manual opening and closing of the valve.

200 Series On/Off

*For other pilots please consult

<u>BERMAD</u>

Technical Data

Pressure Rating:

150 psi

Operating Pressure Range:

Technical Specifications For other end connection types,

10-150 psi

Materials

Body & Cover:

Polyamide 6 & 30% GF

Diaphragm:

NBR

Spring:

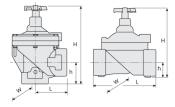
Stainless Steel

Control Loop Accessories

Tubing and Fittings:

Polyethylene and Polypropylene

AC solenoid:


S-390-T-3W P.B.-24 V AC

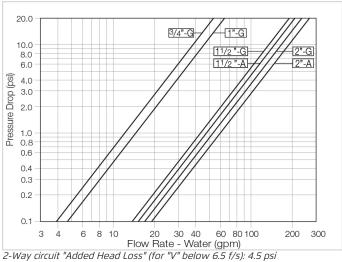
DC solenoid:

S-390-T-3W P.B.-24 V DC

DC latch solenoid:

S-392-T-3W-9-20 V DC Latch

Size	Pattern	End Connection	Weight (Lb)	L (In)	H (In)	h (ln)	w	CCDV (Gal)	cv
¾" ; DN20	Globe	Threaded	0.8	4%	4%	7∕8	3%	0.003	10
1" ; DN25	Globe	Threaded	0.7	4%	4%	7∕8	31/8	0.003	10
1½"; DN40	Globe	Threaded	2.2	6%	71/8	13/8	5	0.016	43
1½"; DN40	Angle	Threaded	2.1	31/8	71/2	15/8	5	0.016	47
2"; DN50	Globe	Threaded	2.4	6¾	12¾	11/2	5	0.016	54
2" : DN50	Angle	Threaded	2	3%	81/4	2%	5	0.016	60


CCDV = Control Chamber Displacement Volume

Please refer to **BERMAD** full engineering page.

Additional Features

Code	Description	Size Range		
5	Plastic Test Point	3/4"-2"		
7	½" Anti Vacuum at Valve Downstream	3/4"-2"		

Flow Chart

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Cv}\right)^2$$
 $Cv = gpm @ \Delta P \text{ of 1 psi}$
 $Q = gpm$
 $\Delta P = psi$

www.bermad.com