

VÁLVULA CON CONTROL GREENAPP

Modelo IR-21T-GreenApp-2W

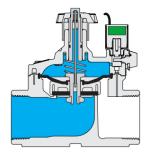
La válvula controlada por solenoide de 2 vías de BERMAD con selector manual Trio integrado es una válvula de control operada por diafragma de accionamiento hidráulico con circuito de control hidráulico interno de alimentación y purga. El selector Trio permite el funcionamiento eléctrico automático o la anulación manual de la señal eléctrica al abrir/ cerrar. El BERMAD GreenApp™ es un controlador de riego Bluetooth inteligente de una sola estación, flexible y fácil de usar con un solenoide integrado que ejecuta programas de riego programados y manuales, gestionados mediante una aplicación móvil gratuita y fácil de usar (Android e iOS) desde su teléfono inteligente o tableta.

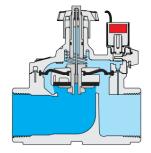
* ¡Esta válvula está diseñada solo para uso en riego y no para otros usos! La garantía del fabricante se limita únicamente al uso permitido.

[1] El modelo IR-21T-GreenApp-2W de BERMAD se abre y cierra herméticamente en respuesta a una señal eléctrica, lo que hace que el solenoide abra o cierre el circuito hidráulico interno de la vál

Características y ventajas

- Accionado por la presión de la línea, encendido/apagado controlado hidráulicamente
- Apertura y cierre suaves de la válvula
 - Regulación precisa y estable
 - Requisitos de baja presión de operación
- Válvula de globo compuesta hidroeficiente
 - Trayectoria de flujo sin obstrucciones
 - Una sola pieza móvil
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
- Diafragma flexible unificado y tapon guiado
 - Previene la erosión y distorsión del diafragma
- Diafragma totalmente equilibrado con soporte periférico
 - Baja presión de accionamiento
- Diseño de facil manejo
 - Inspección y mantenimiento sencillos en línea


Aplicaciones típicas


- Sistemas de riego automatizados
- Sistemas de goteo
- Paisajismo

Operación:

Posición cerrada: la restricción interna permite que la presión de la línea entre continuamente en la cámara de control. El solenoide controla el flujo de salida de la cámara de control. Cuando el solenoide está cerrado, hace que se acumule presión en la cámara de control, lo que obliga a cerrar la válvula.

Posición abierta: la apertura del solenoide libera más flujo de la cámara de control del que puede entrar según lo permitido por la restricción. Esto hace que la presión acumulada en la cámara de control disminuya, lo que permite que la presión de la línea que actúa sobre el tapón abra la válvula.

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.7-10 bar

Materiales

Cuerpo y tapa:

Poliamida 6 y 30% GF

Diafragma:

NBR

Resorte (muelle):

Acero inoxidable

Accesorios del circuito de control

Tuberías y conectores:

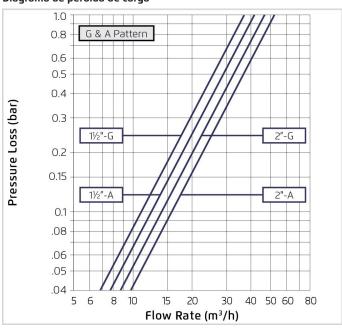
Polietileno

Solenoide DC (CC):

GreenApp 2-Way

Especificaciones técnicasConsulte la página completa de i

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.


Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	KV
¾" ; DN20	Globo	Rosca	0.35	110	150	22	78	0.015	9
1" ; DN25	Globo	Rosca	0.33	110	150	22	78	0.015	9
1½"; DN40	Globo	Rosca	1	160	194	35	125	0.072	37
2" · DN50	Globo	Rosca	11	170	200	38	125	0.072	47

VDCC = Volumen de descarga (desplazamiento) en la cámara de control

Características adicionales

Código	Descripción	Rango de tamaños		
М	Cierre mecánico	1½"-2" / DN40-50		
5	Toma de presión de plástico	1½"-2" / DN40-50		
Z	Selector manual	1½"-2" / DN40-50		

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0,3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com