

VÁLVULA CONTROLADA PELO GREENAPP

Modelo IR-21T-GreenApp-2W

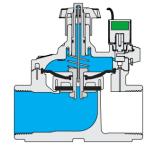
A Válvula Controlada por Solenoide de 2 Vias da BERMAD com seletor manual Trio integrado é uma válvula de controle operada hidraulicamente e acionada por diafragma, com circuito de controle hidráulico interno de Alimentação e Sangria. O seletor Trio permite a operação elétrica automatizada ou a intervenção manual de abertura/fechamento do sinal elétrico. O BERMAD GreenApp™ é um controlador de irrigação de estação única com Bluetooth, inteligente, flexível e fácil de usar, com um solenoide integrado que executa programas de irrigação programados e manuais, gerenciados por um aplicativo móvel (Android e iOS) gratuito e fácil de usar através de seu smartphone ou tablet.

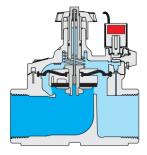
*Esta válvula foi projetada somente para uso em irrigação e não para outros usos! A garantia do fabricante é limitada somente ao uso permitido.

[1] O modelo IR-21T-GreenApp-2W da BERMAD abre e fecha, sem de gotejamento, em resposta a um sinal elétrico, fazendo com que o solenoide abra ou feche o circuito hidráulico interno da válvula

Benefícios e Características

- On/Off, Controlada Hidraulicamente, Acionada por Pressão de Linha
- Abertura e Fechamento Suaves da Válvula
 - Regulagem precisa e estável
 - Requisitos de baixa pressão operacional
- Válvula Globo Hidroeficiente de Compósitos
 - Percurso de fluxo sem obstruções
 - Peça móvel única
 - Altamente durável, resistente a produtos químicos e cavitação
- Diafragma Flexível Unificado e Obturador com Guia
 - Evita a erosão e distorção do diafragma
- Diafragma Totalmente Suportado e Balanceado
 - Requer baixa pressão de atuação
- Design Fácil de Usar
 - Inspeção e Serviço Simples em Linha


Aplicações Típicas


- Sistemas de Irrigação Automatizados
- Sistemas de Gotejamento
- Paisagismo

Operação:

Posição Fechada: A restrição interna permite uma pressão da linha contínua na câmara de controle. O solenoide controla o fluxo de saída da câmara de controle. Quando o solenoide é fechado, a pressão é acumulada na câmara de controle e isso força o fechamento da válvula.

Posição Aberta: A abertura do solenoide libera mais fluxo da câmara de controle do que a restrição pode permitir. Isso faz com que a pressão acumulada na câmara de controle diminua, permitindo que a pressão de linha atue sobre o obturador para abrir a válvula.

IR-21T-GreenApp-2W

On/Off

Dados Técnicos

Classe de Pressão:

10 bar

Faixa de Pressão Operacional: 0.7-10 bar

Materiais

Corpo e Tampa: Poliamida 6 e 30% GF

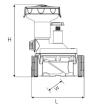
Diafragma:

NBR

Mola: Aço inox

Acessórios do Circuito de Controle

Tubulação e Conexões:

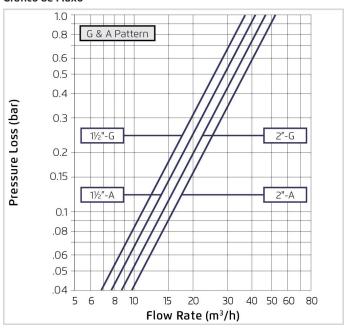

Polietileno

Solenoide CC:

GreenApp 2-Way

Especificações Técnicas

Para outros tipos de conexões de encaixe, consulte a página de engenharia completa da <u>BERMAD</u>.


Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	KV
¾" ; DN20	Globo	Rosqueado	0.35	110	150	22	78	0.015	9
1" ; DN25	Globo	Rosqueado	0.33	110	150	22	78	0.015	9
1½" ; DN40	Globo	Rosqueado	1	160	194	35	125	0.072	37
2" ; DN50	Globo	Rosqueado	1.1	170	200	38	125	0.072	47

CCDV = Volume de Deslocamento da Câmara de Controle

Características Adicionais

Código	Descrição	Faixa de Tamanho
М	Fecho Mecânico	1½"-2" / DN40-50
5	Ponto de Teste Plástico	1½"-2" / DN40-50
Z	Seletor Manual	1½"-2" / DN40-50

Gráfico de Fluxo

Circuito de 2 Vias "Perda de Carga Adicionada" (para "V" abaixo de 2 m/s): 0,3 bar

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{KV}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros