

VANNE COMMANDÉE PAR SOLÉNOÏDE

Modèle IR-210-3W-X

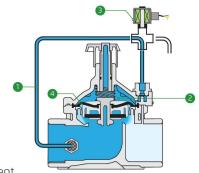
La vanne commandée par solénoïde de BERMAD est une

actionné hydrauliquement, actionné par diaphragme vanne de régulation qui s'ouvre et se ferme en réponse à un signal électrique.

*Cette vanne est conçue pour l'irrigation uniquement et non pour d'autres utilisations! La garantie du fabricant est limitée à l'utilisation autorisée uniquement.

- [1] Le Modèle IR-210-3W-X de BERMAD s'ouvre en réponse à un signal électrique.
- [2] Compteur d'eau
- [3] Vanne d'air combinée modèle IR-C10
- [4] Casse-vide, PN10
- [5] Unité Terminale Distante RTU

Caractéristiques et avantages


- Entraînement de pression de ligne, à commande hydraulique
 - Régulation de la pression hydraulique par solénoïde
 - Piloté par la pression de ligne
 - Commande électrique marche/arrêt
 - Convient également aux systèmes distants et/ ou surélevés
- Vanne à clapet composite à haut rendement hydraulique
 - Voie d'écoulement dégagée
 - Une seule pièce mobile
 - Capacité de débit élevée
 - Très durable, résistant aux produits chimiques et à la cavitation
- Diaphragme flexible unitisé et bouchon guidé
 - Excellentes performances de régulation à faibles débits
 - Empêche l'érosion et la distorsion du diaphragme
- Diaphragme entièrement soutenu & équilibré
 - Nécessite une faible pression d'actionnement
- Conception facile d'utilisation
 - Inspection et entretien simples en ligne

Applications types

- modernisation du pilotage des réseaux d'irrigation
- Tête et poste de distribution d'irrigation
- Paysage
- Systèmes d'irrigation à basse pression

Fonctionnement:

Pression de conduite 🛛 est appliquée à la chambre de commande [2] via le solénoïde à 3 voies ouvert [3]. Cela crée une force de fermeture supérieure qui déplace l'ensemble Membrane 4 vers une position fermée. La fermeture du solénoïde l'amène à évacuer la pression de la chambre de commande, ouvrant ainsi la vanne.

IR-210-3W-X

Contrôle marche/arrêt

Données techniques

Pression nominale: 10 bar

Plage de pression de fonctionnement:

0.7-10 bar

Matériaux

Corps et couvercle: Polyamide 6 & 30% GF

Membrane:

NBR

Ressort:

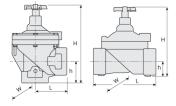
Acier inoxydable

Accessoires circuit de contrôle

Tubes et raccords:

Polyéthylène et polypropylène

Solénoïde AC :

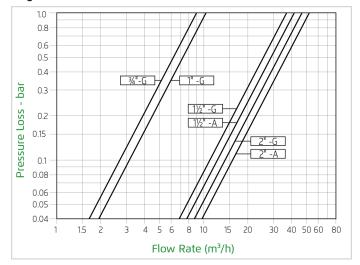

S-390-T-3W

Solénoïde à impulsion:

S-392-T-3W P.B S-390-T-3W *Pour d'autres solénoïdes, veuillez consulter <u>BERMAD</u>

Données techniques

Pour d'autres types de raccords d'extrémité, veuillez consulter la page d'ingénierie complète de <u>BERMAD</u>.


Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	KV
¾" ; DN20	Globe	Taraudée	0.35	110	115	22	78	0.015	9
1" ; DN25	Globe	Taraudée	0.33	110	115	22	78	0.015	9
1½"; DN40	Globe	Taraudée	1	160	180	35	125	0.072	37
1½"; DN40	Angle	Taraudée	0.95	80	190	40	125	0.072	41
2"; DN50	Globe	Taraudée	1.1	170	190	38	125	0.072	47
2"; DN50	Angle	Taraudée	0.91	85	210	60	125	0.072	52

CCDV = Volume de déplacement de la chambre de contrôle

Caractéristiques supplémentaires

Code	Description	Tailles disponibles		
М	Limiteur d'ouverture	1½"-2" / DN40-50		
5	Prise pression plastique	1½"-2" / DN40-50		
Z	Assemblage d'indicateur de position	1½"-2" / DN40-50		

Plage de débit

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{KV}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd