

HYDRAULIC CONTROL VALVE

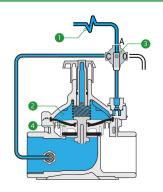
Model IR-205-Z

The BERMAD Hydraulic Control Valve is a hydraulically operated, diaphragm actuated control valve that opens and shuts in response to a local or remote pressure command.

*This valve is designated for irrigation use only and not for other uses! Manufacturer warranty is limited to the permitted use only.

- [1] BERMAD Model IR-205-Z open upon local manual command
- [2] Pressure Reducing Hydrometer Model IR-920-M0-KXZ
- [3] Combination Air Valve Model IR-C10
- [4] RTU-Remote Terminal Unit

Features & Benefits


- Line Pressure Drive, Hydraulically Controlled
 - Hydraulically controlled On/Off
- Composite Hydro-Efficient Globe Valve
 - Unobstructed flow path
 - Single moving part
 - High flow capacity
 - Highly durable, chemical and cavitation resistant
- Unitized Flexible Diaphragm and Guided Plug
 - Excellent low flow regulation performances
 - Prevents diaphragm erosion and distortion
- Fully Supported & Balanced Diaphragm
 - Requires low actuation pressure
- User-Friendly Design
 - Simple in-line inspection and service

Typical Applications

- Automated Irrigation Systems
- Distribution Centers
- Systems Subject to Varying Supply Pressure
- Landscape

Operation:

Hydraulic Command [1] is applied to the Control Chamber [2] through the Manual Selector $\fbox{3}$. This creates superior closing force that moves the Diaphragm Assembly [4] to a closed position. Discharging of pressure from the control chamber, by turning the manual selector, causes the line pressure acting on the lower side of the diaphragm assembly to move the valve to an open position.

On/Off

Technical Data

Pressure Rating:

10 bar

Operating Pressure Range:

0.7-10 bar

Materials

Body & Cover:

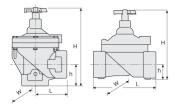
Polyamide 6 & 30% GF

Diaphragm:

NBR

Spring: Stainless Steel

Control Loop Accessories

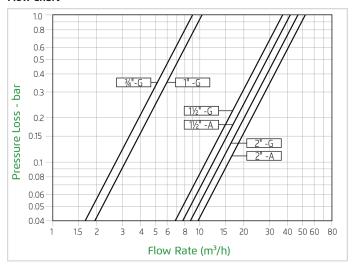

Tubing and Fittings:

Polyethylene and Polypropylene

Technical Specifications

For other end connection types,

Please refer to **BERMAD** full engineering page.


Size	Pattern	End Connection	Weight (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
¾" ; DN20	Globe	Threaded	0.35	110	115	22	78	0.015	9
1" ; DN25	Globe	Threaded	0.33	110	115	22	78	0.015	9
1½"; DN40	Globe	Threaded	1	160	180	35	125	0.072	37
1½"; DN40	Angle	Threaded	0.95	80	190	40	125	0.072	41
2" ; DN50	Globe	Threaded	1.1	170	190	38	125	0.072	47
2"; DN50	Angle	Threaded	0.91	85	210	60	125	0.072	52

CCDV = Control Chamber Displacement Volume

Additional Features

Code	Description	Size Range			
М	Flow Stem	1½"-2" / DN40-50			
5	Plastic Test Point	1½"-2" / DN40-50			

Flow Chart

2-Way circuit "Added Head Loss" (for "V" below 2 m/s): 0.3 bar

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

