

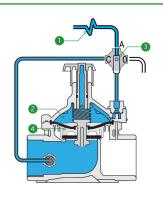
VÁLVULA BÁSICA DE CONTROLE HIDRÁULICO

Modelo IR-205-M

A Válvula de Controle Hidráulico da BERMAD é uma válvula de controle operada hidraulicamente e acionada por diafragma, que abre e fecha em resposta a um comando de pressão remoto ou local. *Esta válvula foi projetada somente para uso em irrigação e não para outros usos! A garantia do fabricante é limitada somente ao uso permitido.

- [1] O modelo IR-205-M da BERMAD é aberto mediante comando manual local
- [2] Hidrômetro Redutor de Pressão Modelo IR-920-M0-KXZ
- [3] Válvula Ventosa Combinada Modelo IR-C10
- [4] Unidade Terminal Remota (RTU)

Benefícios e Características


- Controlada Hidraulicamente, Acionada por Pressão de Linha
 - On/Off controlada hidraulicamente
- Válvula Globo Hidroeficiente de Compósitos
 - Percurso de fluxo sem obstruções
 - Peça móvel única
 - Alta capacidade de fluxo
 - Altamente durável, resistente a produtos químicos e cavitação
- Diafragma Flexível Unificado e Obturador com Guia
 - Excelentes desempenhos de regulagem em baixo fluxo
 - Evita a erosão e distorção do diafragma
- Diafragma Totalmente Suportado e Balanceado
 - Requer baixa pressão de atuação
- Design Fácil de Usar
 - Inspeção e Serviço Simples em Linha

Aplicações Típicas

- Sistemas de Irrigação Automatizados
- Centros de Distribuição
- Sistemas Sujeitos a Diferentes Pressões de Alimentação
- Paisagismo

Operação:

O Comando Hidráulico 🔟 é aplicado na Câmara de Controle 🔁 através do Seletor Manual [3]. Isso cria uma força de fechamento superior que move o Conjunto do Diafragma [4] para a posição fechada. A descarga de pressão da câmara de controle, ao girar o seletor manual, faz com que a pressão de linha, que atua no lado inferior do conjunto do diafragma, mova a válvula para a posição aberta.

On/Off

Dados Técnicos

Classe de Pressão:

10 bar

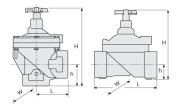
Faixa de Pressão Operacional: 0.7-10 bar

Materiais

Corpo e Tampa: Poliamida 6 e 30% GF

Diafragma: **NBR**

Mola:

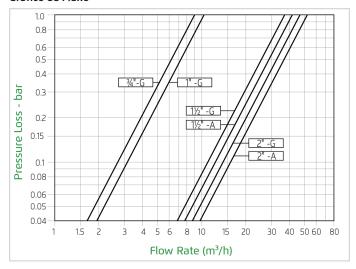

Aço inox

Acessórios do Circuito de Controle

Tubulação e Conexões: Polietileno

Especificações Técnicas

Para outros tipos de conexões de encaixe, consulte a página de engenharia completa da **BERMAD**.


Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
¾" ; DN20	Globo	Rosqueado	0.35	110	115	22	78	0.015	9
1" ; DN25	Globo	Rosqueado	0.33	110	115	22	78	0.015	9
1½" ; DN40	Globo	Rosqueado	1	160	180	35	125	0.072	37
1½" ; DN40	Angular	Rosqueado	0.95	80	190	40	125	0.072	41
2" ; DN50	Globo	Rosqueado	1.1	170	190	38	125	0.072	47
2" ; DN50	Angular	Rosqueado	0.91	85	210	60	125	0.072	52

CCDV = Volume de Deslocamento da Câmara de Controle

Características Adicionais

Código	Descrição	Faixa de Tamanho
Z	Seletor Manual	1½"-2" / DN40-50
5	Ponto de Teste Plástico	1½"-2" / DN40-50

Gráfico de Fluxo

Circuito de 2 Vias "Perda de Carga Adicionada" (para "V" abaixo de 2 m/s): 0,3

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros