Riduttore di Pressione

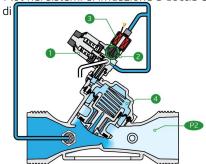
VALVOLA DI RIDUZIONE PRESSIONE TOP PILOT

Modello IR-12T-55-3W-X

Le valvole di controllo e riduzione della pressione BERMAD Top Pilot con controllo a solenoide offrono prestazioni eccellenti, design compatto e funzionamento plug & play intuitivo, grazie a un innovativo pilota integrato, dotato di un quadrante di regolazione ad alta risoluzione per una calibrazione facile, rapida e precisa. Il modello IR-12T-55-3W-X riduce la pressione a monte più elevata a una pressione a valle costante e calibrata, indipendentemente dalle fluttuazioni di portata, e si apre completamente quando la pressione di linea scende al di sotto del valore impostato. La valvola si apre e si chiude in risposta a un segnale elettrico.

- [1] Il modello BERMAD IR-12T-55-3W-X crea una zona a pressione ridotta, proteggendo le linee laterali e di distribuzione.
- [2] Valvola dell'Aria Combinata Modello IR-C10
- [3] Valvola dell'Aria Combinata Modello IR-C10
- [4] Unità terminale remota RTU

Operazioni:


Il pilota di riduzione della pressione 🔟 comanda la valvola a farfalla di chiudersi quando la pressione a valle [P2] supera il valore impostato e di aprirsi completamente quando scende al di sotto del valore impostato. Il selettore Trio integrato [2] consente la chiusura e l'apertura manuale o il controllo elettrico, in cui il solenoide [3] collega la camera di controllo della valvola [4] alla pressione di linea per chiudere la valvola o la sfiata attraverso il pilota per aprirla.

Caratteristiche e vantaggi

- Accensione/spegnimento azionato dalla pressione di linea, controllato idraulicamente
 - Protegge i sistemi a valle
 - Si apre completamente in risposta a una caduta di pressione di linea
- Pilota integrato a 3 vie Design intuitivo
 - Manopola di regolazione e scala ad alta risoluzione per una facile calibrazione senza alcun manometro
 - Soluzione compatta «box-size»
 - Il controllo del solenoide può essere facilmente aggiunto o rimosso
 - Particolarmente adatto a tutte le dimensioni fino a 3"
- Valvola in Plastica Ingegnerizzata con Design di Livello Industriale
 - Adattabile in loco ad un'ampia gamma di connessioni terminali
 - Altamente durevole, resistente agli agenti chimici e alla cavitazione
- Corpo Valvola hYflow Y con design "Look Through"
 - Portata ultra elevata a bassa perdita di pressione
- Diaframma "flessibile a supercorsa" (FST) unificato con otturatore quidato
 - Regolazione precisa e stabile con chiusura facile
 - Richiede una bassa pressione di esercizio
 - Previene l'erosione e la distorsione del diaframma

Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Sistemi Soggetti a Variazioni della Pressione di Alimentazione
- Valvole Plot nei sistemi di irrigazione a goccia e a pioggia
- Sistemi di

Dati Tecnici

Pressione d'esercizio: 10 bar

Intervallo di Pressione Operativa:

Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.

0.5-10 bar

Materiali

Corpo e Coperchio:

Poliammide 6 e 30% VF

Diaframma:

NR, Tessuto in nylon rinforzato

Molla:

Acciaio Inox

Accessori del Circuito

Pilota PRV: Top Pilot

Range molla del pilota:

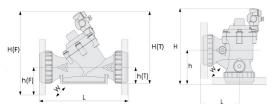
Molla	Colore Molla	Range di Regolazione
Black		0.8-6 bar

- H2 per scala a barre
- J2 per scala psi

Tubi e raccordi:

Polietilene e poliprolpilene

Solenoide AC:

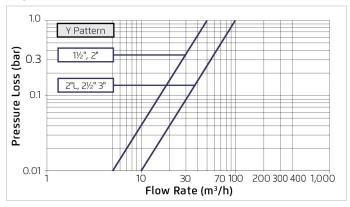

S-390-T-3W

Solenoide DC bistabile:

S-392-T-3W P.B S-982-3W P.B.

*Per altri solenoidi, consultare BERMAD

x000D


Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Obliquo	Filettato	1.3	200	238	40	142	0.12	50
2" ; DN50	Obliquo	Filettato	1.4	230	238	40	142	0.12	50
2"L; DN50L	Obliquo	Filettato	1.7	230	257	43	152	0.15	100
2½"; DN65	Obliquo	Filettato	1.4	230	257	43	152	0.15	100
2" ; DN50	Angolo	Filettato	1.4	115	279	115	142	0.12	50
3"; DN80	Obliquo	Filettato	1.8	298	269	55	152	0.15	100
3"; DN80	Obliquo	Flange di Plastica	2.7	308	314	100	200	0.15	100
3"; DN80	Obliquo	Flange metalliche	4.6	308	314	100	200	0.15	100
3" ; DN80	Angolo	Filettato	1.8	133	294	118	152	0.15	85
3"; DN80	Angolo	Flange di Plastica	2.7	138	299	123	200	0.15	85
3"; DN80	Angolo	Flange metalliche	4.6	138	299	123	200	0.15	85

CCDV = Volume di spostamento della camera di controllo • Filettato = BSP e NPT sono disponibili. La filettatura esterna è disponibile solo per 2" e 2½». • Altre Connessioni terminali sono disponibili su richiesta. Per le dimensioni e i pesi degli adattatori o delle valvole con adattatori, consultare

Caratteristiche Aggiuntive

II SELVIZIO CIETTI						
Codice	Descrizione	Gamma di Dimensioni				
5	Per manometro plastica	1½"-4" / DN40-100				
Z	Selettore Manuale	1½"-4"L / DN40-100L				
V3	Adattatori PVC Victaulic 3"	3" / DN80				
V4	Adattatori PVC Victaulic 4"	4" / DN100				

diagramma di flusso

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

