

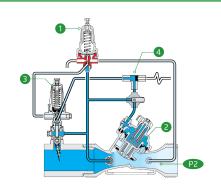
FLOW CONTROL & PRESSURE REDUCING VALVE

Model IR-172-50-3W-X7t

The BERMAD Flow Control and Pressure Reducing Valve is a hydraulically operated, diaphragm actuated control valve that limits system demand to the designed maximum allowed value; reduces downstream pressure to constant preset maximum and shut in respond to hydraulic pressurized command.

- [1] BERMAD Model IR-172-50-3W-XZt limits over-demand, controls laterals and distribution line fill-up while reducing pressure.
- [2] Combination Air Valve Model IR-C10
- [3] Water Meter Model Turbo-IR
- [4] RTU-Remote Terminal Unit

Features & Benefits


- Line Pressure Driven Hydraulic Flow Control
 - Limits fill-up rate and consumer excessive demand
 - Protects downstream systems
 - Adjustable paddle-type hydro-mechanic flow pilot with no added head loss
 - Easy flow and pressure setting with a wide setting range
- Engineered Composite Valve with Industrial Grade Design
 - Adaptable on-site to a wide range of end connection
 - Highly durable, chemical and cavitation resistant
- hYflow 'Y' Valve Body with "Look Through" Design
 - Ultra-high flow capacity at low pressure loss
- Unitized "Flexible Super Travel" (FST) Diaphragm and Guided Plug
 - Accurate and stable regulation with smooth closing
 - Requires low actuation pressure
 - Prevents diaphragm erosion and distortion
 - Simple in-line inspection and service

Typical Applications

- Line Fill-Up Control
- Pressure Reducing Systems
- Multiple Independent Consumer Systems
- Systems Subject to Varying Supply Pressure
- Mechanized Irrigation Systems
- Filter Stations

Operation:

The Pressure Reducing Pilot (PRP) [1] is hydraulically connected to the control chamber [2] through the Flow Control Pilot (FCP) [3] The PRP commands the valve to throttle closed should downstream pressure rise above setting and to fully open when downstream [P2] pressure drops below setting. The FCP commands the valve to throttle closed should demand rise above setting and to open fully when demand drops below setting. The Shuttle Valve [4] allows valve remote closing by introducing pressurized command to the control chamber, shutting the valve.

Technical Data

Pressure Rating:

10 bar

Operating Pressure Range:

0.5-10 bar

Materials

Body & Cover:

Polyamide 6 & 30% GF

Diaphragm:

NR, Nylon fabric reinforced

Spring:

Stainless Steel

Control Loop Accessories

PR Pilot: PC-SHARP-X-P

FC Pilot: PC-70-X-P

Pilot Spring Range:

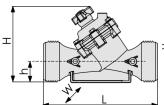
Spring	Spring Color	Setting range		
J	Green	0.2-1.7 bar		
K	Gray	0.5-3.0 bar		
N	Natural	0.8-6.5 bar		
V	Blue & White	1.0-10.0 bar		

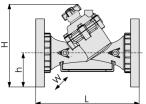
Standard spring - marked in bold

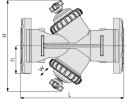
Tubing and Fittings:

Polyethylene and Polypropylene

Flow Control Pilot spring range:

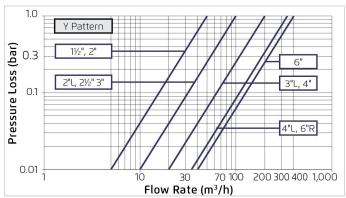

Spring: E-Purple


Flow Velocity (m/sec): 1.5-3.5 *For other pilots and flow velocities range, please consult


BERMAD

Technical Specifications

For other patterns and end connection types, Please refer to <u>BERMAD</u> full engineering page.


Size	Pattern	End Connection	Weight (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblique	Threaded	1.1	200	173	40	97	0.12	50
2" ; DN50	Oblique	Threaded	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblique	Threaded	1.5	230	187	43	135	0.15	100
2½"; DN65	Oblique	Threaded	1.5	230	187	43	135	0.15	100
3"; DN80	Oblique	Threaded	1.6	298	199	55	135	0.15	100
3"; DN80	Oblique	Plastic Flanges	2.5	308	244	100	200	0.15	100
3"; DN80	Oblique	Metal Flanges	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblique	Threaded	3	298	278	60	168	0.62	200
3"L; DN80L	Oblique	Plastic Flanges	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblique	Metal Flanges	4.6	308	317	100	200	0.62	200
4"; DN100	Oblique	Plastic Flanges	4.6	350	329	112	224	0.62	200
4"; DN100	Oblique	Metal Flanges	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblique	Plastic Flanges	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblique	Metal Flanges	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblique	Metal Flanges	16.5	470	377	149	287	1.15	340
6" ; DN150	Boxer	Grooved	11	480	387	100	475	2x0.62	400
6" ; DN150	Boxer	Plastic Flanges	12.5	504	387	143	475	2x0.62	400

CCDV = Control Chamber Displacement Volume • **Threaded** = BSP & NPT are available. External thread is available for 2" and 2½" only. • Other End Connections are available on request. For dimensions and weights of adapters or valves with adapters please consult with customer service.

Additional Features

Code	Description	Size Range
М	Flow Stem (*Exclude sizes 4"L, 6"R)	1½"-6" / DN40-150
5	Plastic Test Point	1½"-4" / DN40-100
V3	Victaulic PVC Adaptors 3"	3" / DN80
V4	Victaulic PVC Adaptors 4"	4" / DN100

Flow Chart

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com