

VÁLVULA DE CONTROL DE CAUD

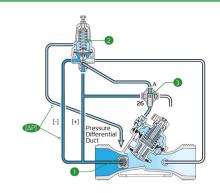
Modelo IR-170-DZb

La válvula reguladora de caudal y reductora de presión BERMAD es una válvula de control operada hidráulicamente y accionada por diafragma que limita la demanda del sistema al valor máximo permitido por el diseño; reduce la presión aguas abajo a un valor máximo constante preestablecido y se cierra en respuesta al comando de presión hidráulica.

[1] El modelo IR-170-DZb de BERMAD protege el sistema de suministro contra el flujo excesivo y limita la tasa de llenado y la sobredemanda de los consumidores.

- [2] Hidrómetro BERMAD modelo IR-900-M0-Z
- [3] Combination Air Valve Model IR-C10
- [4] RTU- unidad terminal remota
- [5] Pressure Sustaining Valve Model IR-130-59-3W-X

Características y ventajas


- Control de caudal hidráulico accionado por la presión en
 - Limita el índice de llenado y la demanda excesiva de los consumidores
- Controlada por piloto Servo de control de caudal ajustable
 - Válvula de aguja dinámica integrada
 - Fácil configuración de flujo
- Válvula de materiales compuestos con diseño de arado industrial
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
 - Sin tornillos ni tuercas internos
- Cuerpo en forma de 'Y' con pasaje sin interferencias (Look Through)
 - Capacidad de flujo ultra-elevada -Baja pérdida de carga
- Diafragma unificado de tipo Flexible Super Travel (FST) y tapon quiado
 - Regulación precisa y estable con cierre suave
 - Baja presión de accionamiento
 - Previene la erosión y distorsión del diafragma
- Sensor de Caudal Interno con "Conducto de Presión Diferencial"
 - Sin partes móviles
 - Ahorra espacio y simplifica la instalación

Aplicaciones típicas

- Control de llenado de la línea
- Múltiples sistemas independientes para consumidores
- Sistemas sujetos a fluctuaciones en la presión de suministro
- Centros de distribución

Operación:

La presión diferencial [AP] a lo largo del conducto de presión diferencial [1] es directamente proporcional a la demanda. El piloto de flujo [2] detecta la [AP] continuamente y ordena a la válvula que se cierre gradualmente si la demanda supera la configuración del piloto, y que se abra gradualmente cuando la demanda sea inferior a la configuración del piloto. El selector manual [3] permite el cierre manual local.

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa:

Poliamida 6 y 30% GF

Diafragma:

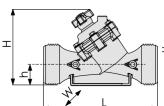
NR, Nylon reforzado

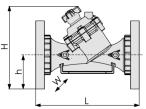
Resorte (muelle): Acero inoxidable

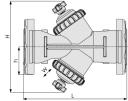
Accesorios del circuito de control

Piloto Limitador: PC-SD-A-P

Gama de resorte de piloto:

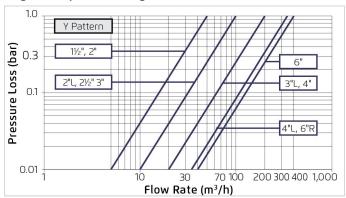

Resorte (muelle)		rango de ajuste		
J	Verde	0.2-1.7 bar		


Tuberías y conectores:


Polietileno

Especificaciones técnicas

Consulte la página completa de ingeniería de BERMAD acerca de otras formas y tipos de conectores.



Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblicua	Rosca	1.1	200	173	40	97	0.12	50
2" ; DN50	Oblicua	Rosca	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblicua	Rosca	1.5	230	187	43	135	0.15	100
2½"; DN65	Oblicua	Rosca	1.5	230	187	43	135	0.15	100
3"; DN80	Oblicua	Rosca	1.6	298	199	55	135	0.15	100
3"; DN80	Oblicua	Bridas plásticas	2.5	308	244	100	200	0.15	100
3"; DN80	Oblicua	Bridas metálicas	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblicua	Rosca	3	298	278	60	168	0.62	200
3"L; DN80L	Oblicua	Bridas plásticas	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblicua	Bridas metálicas	4.6	308	317	100	200	0.62	200
4" ; DN100	Oblicua	Bridas plásticas	4.6	350	329	112	224	0.62	200
4" ; DN100	Oblicua	Bridas metálicas	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblicua	Bridas plásticas	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblicua	Bridas metálicas	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblicua	Bridas metálicas	16.5	470	377	149	287	1.15	340
6" ; DN150	Boxer	Ranura (Victaulic)	11	480	387	100	475	2x0.62	400
6" ; DN150	Boxer	Bridas plásticas	12.5	504	387	143	475	2x0.62	400

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles. La rosca externa está disponible solo para 2" y 2½". • Otras conexiones terminales disponibles a pedido. En materia de dimensiones y pesos de adaptadores o de válvulas con adaptadores consulte con el servicio al cliente. **Características adicionales**

Código	Descripción	Rango de tamaños
М	cierre mecánico (*excluyendo tamaños 4"L, 6"R)	1½"-6" / DN40-150
5	Toma de presión de plástico	1½"-4" / DN40-100
V3	Adaptadores para PVC Victaulic 3"	3" / DN80
V4	Adaptadores para PVC Victaulic 4"	4" / DN100

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0.3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h @ \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com