

VÁLVULA DE CONTROLE DE FLUXO

Com Controle por Solenoide

Modelo IR-170-55-Db

A Válvula de Controle de Fluxo, Normalmente Fechada com Controle Remoto Hidráulico da BERMAD é uma válvula de controle operada hidraulicamente e acionada por diafragma, que limita a demanda do sistema para uma taxa de fluxo máxima constante predefinida. A válvula abre ou fecha em resposta a um sinal elétrico.

[1] O modelo IR-172-55-Db da BERMAD é aberto em resposta a um sinal elétrico, protege o sistema de alimentação contra fluxo excessivo, limita o abastecimento das linhas de distribuição e laterai

Benefícios e Características

- On/Off, Controlada Eletricamente, Acionada por Pressão de Linha
 - Limita a taxa de abastecimento e a demanda excessiva de consumo
- Controlada por Piloto Servo de Fluxo Ajustável
 - Dinâmica com Válvula Agulha Integrada
 - Fácil configuração de fluxo
- Válvula em Compósito de Engenharia com Design de Classificação Industrial
 - Altamente durável, resistente a produtos químicos e cavitação
 - Sem parafusos e porcas internos
- Corpo da válvula hYflow 'Y' com design "Transparente"
 - Capacidade de fluxo ultra-alta com baixa perda de pressão
- Diafragma de Curso Superflexível (FST) Unificado com Obturador com Guia
 - Regulagem precisa e estável com fechamento suave
 - Requer baixa pressão de atuação
 - Evita a erosão e distorção do diafragma
- Sensor de Fluxo "Duto de Diferencial de Pressão" Interno
 - Sem partes móveis
 - Economiza espaço e simplifica a instalação

Operação:

A Válvula Corrediça (Shuttle) [1] conecta hidraulicamente o Solenoide 2 ou o Piloto de Fluxo 3 com a Câmara de Controle da Válvula [4]. O Diferencial de Pressão [AP] no Duto de Diferencial de Pressão [5] é diretamente proporcional à demanda. Quando o solenoide é fechado, o Piloto de Fluxo, detectando continuamente o Diferencial de Pressão [AP], comanda a válvula para que seja fechada por estrangulamento, caso a demanda aumente acima da configuração. O solenoide comuta em resposta a um sinal elétrico, direcionando a pressão de linha através da válvula corrediça (Shuttle) para a câmara de controle e, deste modo, fazendo com que a válvula principal seja fechada. O solenoide também possui fechamento manual local.

Todas as imagens neste catálogo são meramente ilustrativas

Aplicações Típicas

- Sistemas de Irrigação Automatizados
- Controle de Abastecimento da Linha
- Sistemas de Consumo Múltiplos Indopondontes
- Sistemas Su
- Zonas de Fl
- Sistemas de
- Centros de

limentação

gia

Controle de Vazão

Dados Técnicos

Classe de Pressão: 10 bar

Faixa de Pressão Operacional: 0.5-10 bar

Materiais

Corpo e Tampa:

Poliamida 6 e 30% GF

Diafragma:

NR, tecido de nylon reforçado

Mola: Aço inox

Acessórios do Circuito de Controle

Piloto FC: PC-SD-A-P

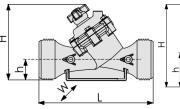
Faixa da Mola do Piloto:

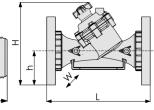
Mola	Cor da Mola	Faixa de ajuste
J		0.2-1.7 bar

Tubulação e Conexões:

Polietileno

Solenoide AC:


S-390-T-3W P.B.-24 V AC


Solenoide tipo Latch CC: S-392-T-3W-9-20 V DC Latch

*Para outros Solenoides, consulte a <u>BERMAD</u>

Especificações Técnicas

Para outros tipos de padrões e conexões de encaixe, consulte a página de engenharia completa da **BERMAD**.

Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
2" ; DN50	Oblíquo	Rosqueado	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblíquo	Rosqueado	1.5	230	187	43	135	0.15	100
2½"; DN65	Oblíquo	Rosqueado	1.5	230	187	43	135	0.15	100
3"; DN80	Oblíquo	Rosqueado	1.6	298	199	55	135	0.15	100
3"; DN80	Oblíquo	Flanges de plástico	2.5	308	244	100	200	0.15	100
3"; DN80	Oblíquo	Flanges de metal	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblíquo	Rosqueado	3	298	278	60	168	0.62	200
3"L; DN80L	Oblíquo	Flanges de plástico	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblíquo	Flanges de metal	4.6	308	317	100	200	0.62	200
4"; DN100	Oblíquo	Flanges de plástico	4.6	350	329	112	224	0.62	200
4"; DN100	Oblíquo	Flanges de metal	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblíquo	Flanges de plástico	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblíquo	Flanges de metal	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblíquo	Flanges de metal	16.5	470	377	149	287	1.15	340

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis. A rosca externa está disponível somente para 2" e 2½". • Outras Conexões de Encaixe estão disponíveis mediante solicitação. Para dimensões e pesos de adaptadores ou válvulas com adaptadores, consulte o serviço de atendimento ao cliente. **Características Adicionais**

Código	Descrição	Faixa de Tamanho
М	Fecho mecânico	1½"-6" / DN40-150
5	Ponto de Teste Plástico	1½"-4" / DN40-100
Z	Seletor Manual	1½"-4"L / DN40-100L
V3	Adaptadores em PVC Victaulic 3"	3" / DN80
V4	Adaptadores em PVC Victaulic 4"	4" / DN100

Gráfico de Fluxo

Circuito de 2 Vias "Perda de Carga Adicionada" (para "V" abaixo de 2 m/s): 0,3

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros