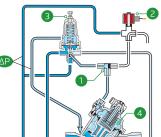


VALVOLA DI CONTROLLO DELLA PORTATA

Con controllo a solenoide

Modello IR-170-55-Db

La valvola di controllo del flusso BERMAD normalmente chiusa con telecomando idraulico è una valvola di controllo a diaframma, azionata idraulicamente che limita la richiesta del sistema a una portata massima costante preimpostata. Si apre o si chiude in risposta a un segnale elettrico.


[1] Il modello BERMAD IR-172-55-Db si apre in risposta al segnale elettrico, protegge il sistema di alimentazione da un flusso eccessivo, limita il riempimento della linea laterale e di distribu

Caratteristiche e vantaggi

- Accensione/spegnimento azionato dalla pressione di linea, controllato elettricamente
 - Limita il tasso di rifornimento e la domanda eccessiva da parte dei consumatori
- Controllo del flusso servocomandato regolabile
 - Valvola a spillo dinamica integrata
 - Facile impostazione del flusso
- Valvola in Plastica Ingegnerizzata con Design di Livello Industriale
 - Altamente durevole, resistente agli agenti chimici e alla cavitazione
 - Privo di bulloni e dadi interni
- Corpo Valvola hYflow Y con design "Look Through"
 - Portata ultra elevata a bassa perdita di pressione
- Diaframma "flessibile a supercorsa" (FST) unificato con otturatore quidato
 - Regolazione precisa e stabile con chiusura facile
 - Richiede una bassa pressione di esercizio
 - Previene l'erosione e la distorsione del diaframma
- Sensore di Flusso interno «Condotto di Pressione Differenziale»
 - Nessuna parte mobile
 - Consente di risparmiare spazio e semplificare l'installazione

Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Controllo del riempimento della linea
- Molteplici sistemi di consumo indinendenti
- Sistemi Soq
- Trame remo
- Sistemi di Ir
- Centri di Dis

di Alimentazione

Operazioni:

La valvola Shuttle [1] collega idraulicamente il solenoide [2] o il pilota di flusso 🖪 alla camera di controllo della valvola 🐴 Il differenziale di pressione [AP] attraverso il condotto di pressione differenziale [5] è direttamente proporzionale alla richiesta. Quando il solenoide è chiuso, il pilota di flusso, rilevando continuamente [AP], comanda alla valvola a farfalla di chiudersi qualora la richiesta superi il valore impostato. In risposta a un segnale elettrico, il solenoide commuta, indirizzando la pressione di linea attraverso la valvola Shuttle nella camera di controllo, provocando così la chiusura della valvola principale. Il solenoide è inoltre dotato di chiusura manuale locale.

Tutte le immagini in questo catalogo sono solo a scopo illustrativo

Serie 100 Controllo del flusso

Dati Tecnici

Pressione d'esercizio:

10 bar

Intervallo di Pressione Operativa:

0.5-10 bar

Materiali

Corpo e Coperchio:

Poliammide 6 e 30% VF

Diaframma:

NR, Tessuto in nylon rinforzato

Molla:

Acciaio Inox

Accessori del Circuito

Pilota di portata: PC-SD-A-

Р

Range molla del pilota:

Molla	Colore Molla	Range di Regolazione		
J		0.2-1.7 bar		

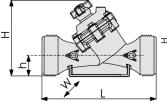
Tubi e raccordi:

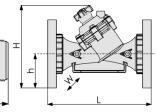
Polietilene e poliprolpilene

Solenoide AC:

S-390-T-3W P.B.-24 V AC

Solenoide DC bistabile:

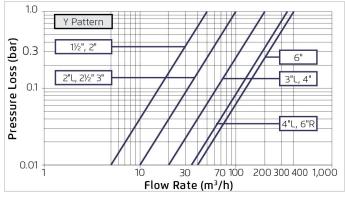

S-392-T-3W-9-20 V DC Latch


*Per altri solenoidi, consultare <u>BERMAD</u> _x000D_

Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.


Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
2" ; DN50	Obliquo	Filettato	1.2	230	173	40	97	0.12	50
2"L; DN50L	Obliquo	Filettato	1.5	230	187	43	135	0.15	100
2½"; DN65	Obliquo	Filettato	1.5	230	187	43	135	0.15	100
3"; DN80	Obliquo	Filettato	1.6	298	199	55	135	0.15	100
3"; DN80	Obliquo	Flange di Plastica	2.5	308	244	100	200	0.15	100
3" ; DN80	Obliquo	Flange metalliche	4.4	308	244	100	200	0.15	100
3"L; DN80L	Obliquo	Filettato	3	298	278	60	168	0.62	200
3"L; DN80L	Obliquo	Flange di Plastica	3.7	308	317	100	200	0.62	200
3"L; DN80L	Obliquo	Flange metalliche	4.6	308	317	100	200	0.62	200
4" ; DN100	Obliquo	Flange di Plastica	4.6	350	329	112	224	0.62	200
4"; DN100	Obliquo	Flange metalliche	7.4	350	329	112	224	0.62	200
4"L; DN100L	Obliquo	Flange di Plastica	9.2	442	340	112	226	1.15	340
4"L; DN100L	Obliquo	Flange metalliche	11.2	442	340	112	226	1.15	340
6"R; DN150R	Obliquo	Flange metalliche	16.5	470	377	149	287	1.15	340

CCDV = Volume di spostamento della camera di controllo • Filettato = BSP e NPT sono disponibili. La filettatura esterna è disponibile solo per 2" e 2½». • Altre Connessioni terminali sono disponibili su richiesta. Per le dimensioni e i pesi degli adattatori o delle valvole con adattatori, consultare

Caratteristiche Aggiuntive

Codice	Descrizione	Gamma di Dimensioni
М	Chiusura meccanica	1½"-6" / DN40-150
5	Per manometro plastica	1½"-4" / DN40-100
Z	Selettore Manuale	1½"-4"L / DN40-100L
V3	Adattatori PVC Victaulic 3"	3" / DN80
V4	Adattatori PVC Victaulic 4"	4" / DN100

diagramma di flusso

Circuito a 2 vie "Perdita di Carico Aggiunta" (per "V" inferiore a 2 m/s): 0,3 bar

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h @ \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com