

FLOW CONTROL VALVE

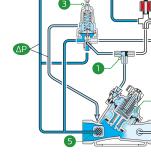
With Solenoid Control

Model IR-170-55-Db

The BERMAD Normally Closed, Flow Control Valve with Hydraulic Remote Control is a hydraulically operated, diaphragm actuated control valve that limits system demand to a constant preset maximum flow rate. It either opens or shuts in response to an electric signal.

[1] BERMAD Model IR-172-55-Db opens in response to electric signal, protects supply system from excessive flow, limits lateral and distribution line fill-up, and reduces their operating pressure

Features & Benefits


- Line Pressure Driven, Electrically Controlled On/Off Limits fill-up rate and consumer excessive demand
- Adjustable Servo Flow Pilot Controlled
 - Dynamic integrated needle valve
 - Easy flow setting
- Engineered Composite Valve with Industrial Grade Design
 - Highly durable, chemical and cavitation resistant
 - No internal bolts and nuts
- hYflow 'Y' Valve Body with "Look Through" Design
 - Ultra-high flow capacity at low pressure loss
- Unitized "Flexible Super Travel" (FST) Diaphragm and Guided Plug
 - Accurate and stable regulation with smooth closing
 - Requires low actuation pressure
 - Prevents diaphragm erosion and distortion
- Internal "Differential Pressure Duct" Flow Sensor
 - No moving parts
 - Saves space and simplifies installation

Typical Applications

- Automated Irrigation Systems
- Line Fill-Up Control
- Multiple Independent Consumer Systems
- Systems Subject to Varying Supply Pressure
- Remote and/or Elevated Plots
- Energy Saving Irrigation Systems
- Distribution Centers

Operation:

The Shuttle Valve 11 hydraulically connects the Solenoid 21 or the Flow Pilot [3] to the Valve Control Chamber [4]. Pressure Differential API across the Differential Pressure Duct 5 is in direct proportion to demand. When the solenoid is closed, the Flow Pilot, continuously sensing [AP], commands the Valve to throttle closed should demand rise above setting. In response to an electric signal the solenoid switches, directing line pressure through the shuttle valve into the control chamber, and thereby causing the main Valve to shut. The solenoid also features local manual closing.

All images in this catalog are for illustration only

Technical Data

Pressure Rating: 10 bar

Operating Pressure Range:

0.5-10 bar

Materials

Body & Cover:

Polyamide 6 & 30% GF

Diaphragm:

NR, Nylon fabric reinforced

Spring:

Stainless Steel

Control Loop Accessories

FC Pilot: PC-SD-A-P

Pilot Spring Range:

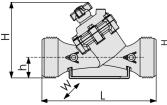
Spring	Spring Color	Setting range
J	Green	0.2-1.7 bar

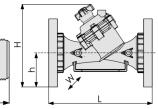
Tubing and Fittings:

Polyethylene and Polypropylene

AC solenoid:

S-390-T-3W P.B.-24 V AC

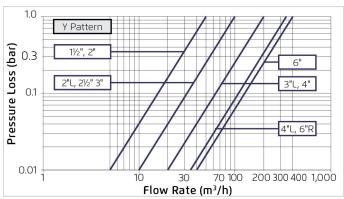

DC latch solenoid:


S-392-T-3W-9-20 V DC Latch

*For other solenoids please consult <u>BERMAD</u>

Technical Specifications

For other patterns and end connection types, Please refer to <u>BERMAD</u> full engineering page.


Size	Pattern	End Connection	Weight (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
2" ; DN50	Oblique	Threaded	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblique	Threaded	1.5	230	187	43	135	0.15	100
2½" ; DN65	Oblique	Threaded	1.5	230	187	43	135	0.15	100
3"; DN80	Oblique	Threaded	1.6	298	199	55	135	0.15	100
3"; DN80	Oblique	Plastic Flanges	2.5	308	244	100	200	0.15	100
3"; DN80	Oblique	Metal Flanges	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblique	Threaded	3	298	278	60	168	0.62	200
3"L; DN80L	Oblique	Plastic Flanges	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblique	Metal Flanges	4.6	308	317	100	200	0.62	200
4"; DN100	Oblique	Plastic Flanges	4.6	350	329	112	224	0.62	200
4"; DN100	Oblique	Metal Flanges	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblique	Plastic Flanges	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblique	Metal Flanges	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblique	Metal Flanges	16.5	470	377	149	287	1.15	340

CCDV = Control Chamber Displacement Volume • **Threaded** = BSP & NPT are available. External thread is available for 2" and 2½" only. • Other End Connections are available on request. For dimensions and weights of adapters or valves with adapters please consult with customer service.

Additional Features

Code	Description	Size Range
М	Flow Stem (*Exclude sizes 4"L, 6"R)	1½"-6" / DN40-150
5	Plastic Test Point	1½"-4" / DN40-100
Z	Manual Selector	1½"-4"L / DN40-100L
V3	Victaulic PVC Adaptors 3"	3" / DN80
V4	Victaulic PVC Adaptors 4"	4" / DN100

Flow Chart

2-Way circuit "Added Head Loss" (for "V" below 2 m/s): 0.3 bar

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

The information contained herein may be changed by BERMAD without notice. BERMAD shall not be held liable for any errors.

© Copyright 2015-2025 BERMAD CS Ltd

October 2025