

VÁLVULA DE CONTROL DE NIVEL CON FLOTADOR ELÉCTRICO DE 2 NIVELES

Modelo IR-150-N3-60-2W

Válvula de control accionada hidráulicamente que controla el llenado y el nivel del depósito. El llenado del depósito se logra en respuesta a un flotador horizontal con modulación hidráulica que mantiene un nivel de agua constante, independientemente de la fluctuación de la demanda.

- [1] El modelo IR-150-N3-60-2W de BERMAD se abre cuando el nivel del depósito desciende, manteniendo el depósito «siempre lleno», y se cierra cuando el nivel del depósito sube hasta el nivel máxi
- [2] Filtro

Características y ventajas

- Control hidraulico de nivel accionado por la presión de la línea
 - Depósito "siempre lleno"
 - Evita el desbordamiento del reservorio
- Válvula de materiales compuestos con diseño de grado industrial
 - Adaptable en el sitio a una amplia gama de conexiones
 - Conexiones de brida articuladas que eliminan la flexión de la línea y las tensiones hidráulicas
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
- Cuerpo en forma de 'Y' con pasaje sin interferencias (Look Through)
 - Capacidad de flujo ultra-elevada -Baja pérdida de carga
- Diafragma unificado de tipo Flexible Super Travel (FST) y tapon quiado
 - Regulación precisa y estable con cierre suave
 - Baja presión de accionamiento
 - Previene la erosión y distorsión del diafragma
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de Riego de Plástico
- Depósitos de gran superficie
- Depósitos de bajo volumen
- Tanques de mezcla de fertilizantes
- Sitios de instalación sin fuente de alimentación disponible
- Sistemas de control de nivel constante donde se requiere mantener el tanque lleno

Operación:

La restricción y el filtro internos []] permiten un flujo continuo desde la entrada de la válvula a la cámara de control [2]. Cuando el nivel del agua sube, empuja al flotador 📵 hacia arriba y acelera al piloto del flotador [4]. La presión en la cámara de control se acumula, lo que hace que la válvula se cierre gradualmente, lo que reduce la velocidad de llenado y, finalmente, se cierra herméticamente.

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

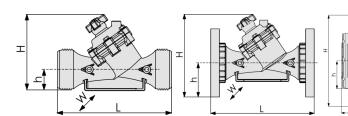
Cuerpo y tapa:

Poliamida 6 y 30% GF

Diafragma:

NR, Nylon reforzado

Resorte (muelle):

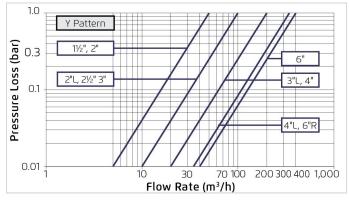

Acero inoxidable

Accesorios del circuito de control

Tuberías y conectores: Polietileno

Especificaciones técnicas

Consulte la página completa de ingeniería de BERMAD acerca de otras formas y tipos de conectores.



Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblicua	Rosca	1.1	200	173	40	97	0.12	50
2" ; DN50	Oblicua	Rosca	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblicua	Rosca	1.5	230	187	43	135	0.15	100
2½" ; DN65	Oblicua	Rosca	1.5	230	187	43	135	0.15	100
3"; DN80	Oblicua	Rosca	1.6	298	199	55	135	0.15	100
3"; DN80	Oblicua	Bridas plásticas	2.5	308	244	100	200	0.15	100
3"; DN80	Oblicua	Bridas metálicas	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblicua	Rosca	3	298	278	60	168	0.62	200
3"L; DN80L	Oblicua	Bridas plásticas	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblicua	Bridas metálicas	4.6	308	317	100	200	0.62	200
4"; DN100	Oblicua	Bridas plásticas	4.6	350	329	112	224	0.62	200
4"; DN100	Oblicua	Bridas metálicas	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblicua	Bridas plásticas	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblicua	Bridas metálicas	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblicua	Bridas metálicas	16.5	470	377	149	287	1.15	340
6" ; DN150	Boxer	Ranura (Victaulic)	11	480	387	100	475	2x0.62	400
6"; DN150	Boxer	Bridas plásticas	12.5	504	387	143	475	2x0.62	400

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles. La rosca externa está disponible solo para 2" y 2½". • Otras conexiones terminales disponibles a pedido. En materia de dimensiones y pesos de adaptadores o de válvulas con adaptadores consulte con el servicio al cliente. **Características adicionales**

Código	Descripción	Rango de tamaños
М	cierre mecánico (*excluyendo tamaños 4"L, 6"R)	1½"-6" / DN40-150
5	Toma de presión de plástico	1½"-4" / DN40-100
Z	Selector manual	1½"-4"L / DN40-100L
V3	Adaptadores para PVC Victaulic 3"	3" / DN80
V4	Adaptadores para PVC Victaulic 4"	4" / DN100

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0,3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h @ \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

La informacion contenida en este documento podrá ser modificada por BERMAD sin previo aviso. BERMAD no asume ninguna responsabilidad por los errores que pudiera contener. © Copyright 2015-2025 BERMAD CS Ltd October 2025