

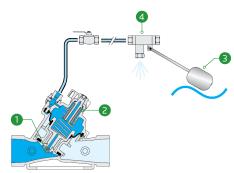
VANNE DE CONTRÔLE DE NIVEAU AVEC FLOTTEUR VERTICAL BI-NIVEAU

Modèle IR-150-60-2W

Vanne de régulation à commande hydraulique qui contrôle le remplissage et le niveau du réservoir. Le remplissage du réservoir est effectué vers un flotteur horizontal à modulation hydraulique qui maintient un niveau d'eau constant, quelles que soient les fluctuations de la demande.

- [1] Le Modèle IR-150-60-2W de BERMAD s'ouvre lorsque le niveau du réservoir baisse, en maintenant le réservoir « toujours plein », et s'arrête lorsque le niveau du réservoir augmente, jusqu'à un
- [2] Filtre

Caractéristiques et avantages


- Régulation de niveau hydraulique entraînée par la pression
 - Réservoir "constamment plein"
 - Empêche le débordement du réservoir
- Valve composite d'ingénierie avec conception de qualité industrielle
 - Adaptable sur site à une large gamme de connexions finales
 - Raccords à bride articulés qui éliminent la flexion des lignes et les contraintes hydrauliques
 - Très durable, résistant aux produits chimiques et à la cavitation
- Corps de valve HyFlow en « Y » avec design « Look Through »
 - Capacité de débit très élevée avec faible perte de pression
- Diaphragme « Flexible Super Travel » (FST) unitisé et bouchon guidé
 - Régulation précise et stable avec fermeture en douceur
 - Nécessite une faible pression d'actionnement
 - Empêche l'érosion et la distorsion du diaphragme
 - Inspection et entretien simples en ligne

Applications types

- Systèmes d'irrigation en plastique
- Réservoirs de grande surface
- Réservoirs à faible volume
- Sites d'installation sans alimentation électrique disponible
- Réservoirs de mélange d'engrais
- Systèmes de contrôle de niveau constant nécessitant le maintien du niveau de remplissage du réservoir

Fonctionnement:

La restriction et le filtre internes [1] permettent un débit continu depuis l'entrée de la vanne vers la chambre de commande [2]. Lorsque le niveau de l'eau augmente, il pousse le Flotteur 🛐 vers le haut, accélérant le Flotteur pilote [4]. La pression dans la chambre de commande s'accumule, ce qui provoque la fermeture de la valve vers l'accélérateur, ce qui réduit le taux de remplissage et finit par se fermer hermétiquement.

IR-150-60-2W

Données techniques

Pression nominale: 10 bar

Plage de pression de fonctionnement:

0.5-10 bar

Matériaux

Corps et couvercle:

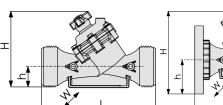
Polyamide 6 & 30% GF

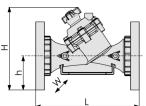
Membrane:

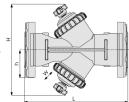
NR, tissu en nylon renforcé

Ressort:

Acier inoxydable

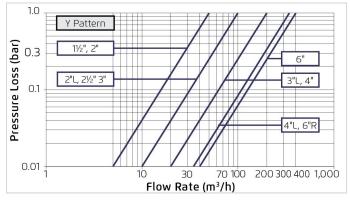

Accessoires circuit de contrôle


Tubes et raccords:


Polyéthylène et polypropylène

Données techniques

Pour d'autres modèles et types de raccordement, se référer à la page d'ingénierie complète de <u>BERMAD</u>.


Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblique	Taraudée	1.1	200	173	40	97	0.12	50
2" ; DN50	Oblique	Taraudée	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
2½"; DN65	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
3"; DN80	Oblique	Taraudée	1.6	298	199	55	135	0.15	100
3"; DN80	Oblique	Brides en plastique	2.5	308	244	100	200	0.15	100
3"; DN80	Oblique	Brides en métal	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblique	Taraudée	3	298	278	60	168	0.62	200
3"L; DN80L	Oblique	Brides en plastique	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblique	Brides en métal	4.6	308	317	100	200	0.62	200
4"; DN100	Oblique	Brides en plastique	4.6	350	329	112	224	0.62	200
4"; DN100	Oblique	Brides en métal	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblique	Brides en plastique	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblique	Brides en métal	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblique	Brides en métal	16.5	470	377	149	287	1.15	340
6" ; DN150		Rainuré	11	480	387	100	475	2x0.62	400
6"; DN150		Brides en plastique	12.5	504	387	143	475	2x0.62	400

CCDV = Volume de déplacement de la chambre de contrôle • **Fileté** = BSP & NPT sont disponibles. Filetage externe disponible uniquement pour 2" et 2½". • D'autres raccordements d'extrémité sont disponibles sur demande. Pour les dimensions et poids des adaptateurs ou des vannes avec

adaptateurs, veuillez consulter le service client. Caractéristiques supplémentaires

Code	Description	Tailles disponibles		
М	Limiteur d'ouverture	1½"-6" / DN40-150		
5	Prise pression plastique	1½"-4" / DN40-100		
Z	Assemblage d'indicateur de position	1½"-4"L / DN40-100L		
V3	Adaptateurs PVC Victaulic 3"	3" / DN80		
V4	Adaptateurs PVC Victaulic 4"	4" / DN100		

Plage de débit

Circuit à 2 voies « Perte de charge ajoutée » (pour « V » inférieur à 2 m/s): 0.3 bar

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd