

Alivio de sobrepresión y presión

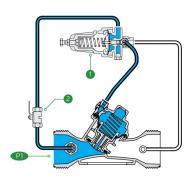
VÁLVULA DE ALIVIO RAPIDO DE PRESIÓN

Modelo IR-13Q-2W

El modelo IR-13Q-2W de BERMAD es una válvula de control de operación hidráulica, accionada por diafragma, diseñada para aliviar las presiones en la línea cuando estas exceden el valor máximo predeterminado. La válvula responde inmediatamente, con precisión y alta repetibilidad, abriéndose por completo. La válvula modelo IR-13Q-2W de BERMAD se cierra herméticamente con gran suavidad.

- [1] La válvula Modelo IR-13Q-2W de BERMAD protege al sistema contra súbitos picos de presión.
- [2] Válvula reductora de presión Modelo IR-120-50-3W-XZ
- [3] Combination Air Valve Model IR-C10
- [4] Caudalímetro electromagnético Modelo M10
- [5] Hidrómetro BERMAD modelo IR-900-M0-Z

Características y ventajas


- Válvula de control hidráulica
 - Accionada por la presión en la línea
 - Corto tiempo de respuesta
 - Cierre hermético y a prueba de goteo de larga duración
- Válvula de materiales compuestos con diseño de grado industrial
 - Adaptable en el sitio a una amplia gama de conexiones
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
- Cuerpo en forma de 'Y' con pasaje sin interferencias (Look Through)
 - Capacidad de flujo ultra-elevada -Baja pérdida de carga
- Diafragma unificado de tipo Flexible Super Travel (FST) y tapon guiado
 - Regulación precisa y estable con cierre suave
 - Baja presión de accionamiento
 - Previene la erosión y distorsión del diafragma
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Protección del sistema contra roturas
- Eliminación de transitorios de presión
- Indicación visual de fallas del sistema
- Protección contra roturas de filtros

Operación:

El piloto de alivio de presión in hace que la válvula se abra inmediatamente si la presión aguas arriba in se eleva súbitamente por encima del valor de ajuste del piloto, y que se cierre hermética y suavemente cuando esta desciende por debajo de ese valor. La llave de cierre in permite la ejecución de pruebas de operación manuales.

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

0.5-10 bar

Materiales

Cuerpo y tapa:

Poliamida 6 y 30% GF

Diafragma:

NR, Nylon reforzado

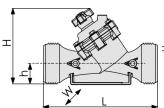
Resorte (muelle): Acero inoxidable

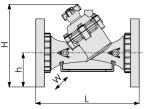
Accesorios del circuito de control

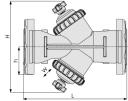
Piloto Sostenedor: PC-3Q-

A-P

Gama de resorte de piloto:

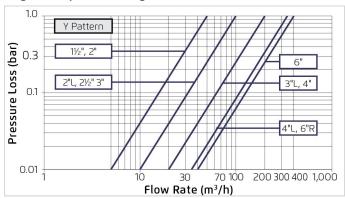

come or resorte or photon							
	Resorte (muelle)		rango de ajuste				
	V	Azul y blanco	1.0-10.0 bar				


Tuberías y conectores:


Polietileno

Especificaciones técnicas

Consulte la página completa de ingeniería de BERMAD acerca de otras formas y tipos de conectores.



Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblicua	Rosca	1.1	200	173	40	97	0.12	50
2" ; DN50	Oblicua	Rosca	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblicua	Rosca	1.5	230	187	43	135	0.15	100
2½" ; DN65	Oblicua	Rosca	1.5	230	187	43	135	0.15	100
3"; DN80	Oblicua	Rosca	1.6	298	199	55	135	0.15	100
3"; DN80	Oblicua	Bridas plásticas	2.5	308	244	100	200	0.15	100
3"; DN80	Oblicua	Bridas metálicas	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblicua	Rosca	3	298	278	60	168	0.62	200
3"L; DN80L	Oblicua	Bridas plásticas	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblicua	Bridas metálicas	4.6	308	317	100	200	0.62	200
4"; DN100	Oblicua	Bridas plásticas	4.6	350	329	112	224	0.62	200
4"; DN100	Oblicua	Bridas metálicas	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblicua	Bridas plásticas	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblicua	Bridas metálicas	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblicua	Bridas metálicas	16.5	470	377	149	287	1.15	340
6" ; DN150	Boxer	Ranura (Victaulic)	11	480	387	100	475	2x0.62	400
6"; DN150	Boxer	Bridas plásticas	12.5	504	387	143	475	2x0.62	400

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • Rosca = BSP y estándar americano NPT disponibles. La rosca externa está disponible solo para 2" y 2½". • Otras conexiones terminales disponibles a pedido. En materia de dimensiones y pesos de adaptadores o de válvulas con adaptadores consulte con el servicio al cliente. **Características adicionales**

Código	Descripción	Rango de tamaños		
5	Toma de presión de plástico	1½"-4" / DN40-100		
V3	Adaptadores para PVC Victaulic 3"	3" / DN80		
V4	Adaptadores para PVC Victaulic 4"	4" / DN100		

Diagrama de pérdida de carga

Circuito de 2 vías "Pérdida de carga añadida" (para "V" por debajo de 2 m/s): 0.3 bar

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com