



# VALVOLA DI SOSTEGNO DELLA PRESSIONE

# Modello IR-130-55-3W-X

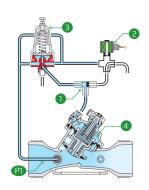
La valvola BERMAD modello IR-130-55-3W-X è una valvola di controllo a diaframma, azionata idraulicamente, che mantiene la pressione minima preimpostata a monte (contropressione) e si apre completamente quando la pressione di linea supera il valore di taratura. Si apre o si chiude in risposta a un segnale elettrico.





- [1] Il modello BERMAD IR-130-55-X si apre in risposta al segnale elettrico, mantiene la pressione del sistema di alimentazione impedendone lo svuotamento e controlla il riempimento delle linee l
- [2] Valvola di controllo a solenoide Modello IR-21T
- [3] Valvola dell'Aria Combinata Modello IR-C10
- [4] Valvola dell'Aria Combinata Modello IR-C10
- [5] Programmatore di irrigazione intelligente OMEGA

# Caratteristiche e vantaggi


- Accensione/spegnimento azionato dalla pressione di linea, controllato elettricamente
  - Assegna priorità alle zone di pressione e controlla il riempimento del sistema
  - Mantiene la pressione di linea a monte.
  - Si apre completamente all'aumento della pressione della linea
- Valvola in Plastica Ingegnerizzata con Design di Livello Industriale
  - Altamente durevole, resistente agli agenti chimici e alla cavitazione
  - Privo di bulloni e dadi interni
- Corpo Valvola hYflow Y con design "Look Through"
  - Portata ultra elevata a bassa perdita di pressione
- Diaframma "flessibile a supercorsa" (FST) unificato con otturatore quidato
  - Regolazione precisa e stabile con chiusura facile
  - Richiede una bassa pressione di esercizio
  - Previene l'erosione e la distorsione del diaframma
- Ispezione e assistenza in linea semplici

## Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Soluzioni per il controllo del riempimento della linea
- Prevenzione dello svuotamento della linea
- Trame remote e/o sopraelevate
- Filtri interni, mantenimento della pressione di controlavaggio
- Sistemi di Irrigazione a Risparmio Energetico

## Operazioni:

La valvola Shuttle 🚺 collega idraulicamente il solenoide 🔁 o il pilota di mantenimento della pressione (PSP) [3] alla camera di controllo della valvola [4]. Quando il solenoide è chiuso, il PSP comanda la valvola a farfalla di chiudersi se la pressione a monte [P1] scende al di sotto del valore impostato e di aprirsi completamente quando [P1] sale al di sopra del valore impostato. In risposta a un segnale elettrico, il solenoide commuta, indirizzando la pressione di linea attraverso la valvola Shuttle nella camera di controllo, determinando così la chiusura della valvola principale. Il solenoide dispone anche di una chiusura manuale locale.



Tutte le immagini in questo catalogo sono solo a scopo illustrativo



# Dati Tecnici

**Pressione d'esercizio:** 10 bar

Intervallo di Pressione Operativa:

0.5-10 bar

#### Materiali

Corpo e Coperchio:

Poliammide 6 e 30% VF

Diaframma:

NR, Tessuto in nylon rinforzato

Molla:

Acciaio Inox

#### Accessori del Circuito

Pilota PSV: PC-SHARP-X-P

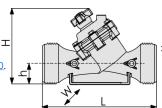
Range molla del pilota:

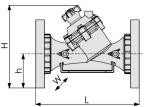
| Molla | Colore Molla | Range di<br>Regolazione |
|-------|--------------|-------------------------|
| J     |              | 0.2-1.7 bar             |
| K     | Grigio       | 0.5-3.0 bar             |
| N     | Naturale     | 0.8-6.5 bar             |
| V     | Blu & Bianco | 1.0-10.0 bar            |

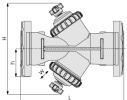
Molla standard - indicata in grassetto \_x000D\_

# Tubi e raccordi:

Polietilene e poliprolpilene


Solenoide DC bistabile:


S-982-3W P.B.

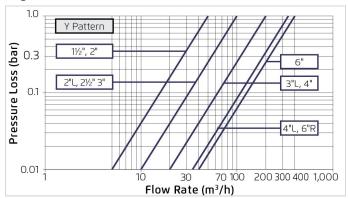

#### Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.








| Dimensione  | Modello | Connessione         | Peso (Kg) | L (mm) | H (mm) | h (mm) | W   | CCDV (Lit) | KV  |
|-------------|---------|---------------------|-----------|--------|--------|--------|-----|------------|-----|
| 1½" ; DN40  | Obliquo | Filettato           | 1.1       | 200    | 173    | 40     | 97  | 0.12       | 50  |
| 2" ; DN50   | Obliquo | Filettato           | 1.2       | 230    | 173    | 40     | 97  | 0.12       | 50  |
| 2"L; DN50L  | Obliquo | Filettato           | 1.5       | 230    | 187    | 43     | 135 | 0.15       | 100 |
| 2½" ; DN65  | Obliquo | Filettato           | 1.5       | 230    | 187    | 43     | 135 | 0.15       | 100 |
| 3"; DN80    | Obliquo | Filettato           | 1.6       | 298    | 199    | 55     | 135 | 0.15       | 100 |
| 3"; DN80    | Obliquo | Flange di Plastica  | 2.5       | 308    | 244    | 100    | 200 | 0.15       | 100 |
| 3"; DN80    | Obliquo | Flange metalliche   | 4.4       | 308    | 244    | 100    | 200 | 0.15       | 100 |
| 3"L; DN80L  | Obliquo | Filettato           | 3         | 298    | 278    | 60     | 168 | 0.62       | 200 |
| 3"L; DN80L  | Obliquo | Flange di Plastica  | 3.7       | 308    | 317    | 100    | 200 | 0.62       | 200 |
| 3"L; DN80L  | Obliquo | Flange metalliche   | 4.6       | 308    | 317    | 100    | 200 | 0.62       | 200 |
| 4" ; DN100  | Obliquo | Flange di Plastica  | 4.6       | 350    | 329    | 112    | 224 | 0.62       | 200 |
| 4" ; DN100  | Obliquo | Flange metalliche   | 7.4       | 350    | 329    | 112    | 224 | 0.62       | 200 |
| 4"L; DN100L | Obliquo | Flange di Plastica  | 9.2       | 442    | 340    | 112    | 226 | 1.15       | 340 |
| 4"L; DN100L | Obliquo | Flange metalliche   | 11.2      | 442    | 340    | 112    | 226 | 1.15       | 340 |
| 6"R; DN150R | Obliquo | Flange metalliche   | 16.5      | 470    | 377    | 149    | 287 | 1.15       | 340 |
| 6" ; DN150  | Boxer   | Scanalata-Victaulic | 11        | 480    | 387    | 100    | 475 | 2x0.62     | 400 |
| 6" ; DN150  | Boxer   | Flange di Plastica  | 12.5      | 504    | 387    | 143    | 475 | 2x0.62     | 400 |

#### Caratteristiche Aggiuntive

| Codice | Descrizione                 | Gamma di Dimensioni |
|--------|-----------------------------|---------------------|
| М      | Chiusura meccanica          | 1½"-6" / DN40-150   |
| 5      | Per manometro plastica      | 1½"-4" / DN40-100   |
| Z      | Selettore Manuale           | 1½"-4"L / DN40-100L |
| V3     | Adattatori PVC Victaulic 3" | 3" / DN80           |
| V4     | Adattatori PVC Victaulic 4" | 4" / DN100          |

#### diagramma di flusso



#### Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
  $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$   
 $Q = m^3/h$   
 $\Delta P = \text{bar}$ 



#### www.bermad.com