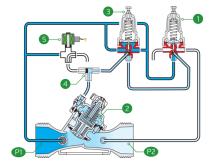


VANNE DE MAINTIEN ET DE RÉDUCTION DE PRESSION

Modèle IR-123-55-3W-X

Le Modèle IR-123-55-3W-X de BERMAD est une vanne de régulation à commande hydraulique actionnée par une membrane qui maintient une pression amont (contre-pression) minimale prédéfinie et réduit la pression aval vers un maximum prédéfini constant. Il s'ouvre ou se ferme en réponse vers un signal électrique.


- [1] Le Modèle IR-123-55-3W-X de BERMAD s'ouvre en réponse vers un signal électrique, maintient la pression d'alimentation, contrôle le remplissage des conduites latérales et de distribution et r
- [2] Débitmètre électromagnétique
- [3] Vanne d'air combinée modèle IR-C10
- [4] Contrôleur d'irrigation intelligent OMEGA
- [5] Vanne de commande hydraulique Modèle IR-105-Z
- [6] Vanne d'air combinée modèle IR-C10

Caractéristiques et avantages

- Commande par pression de ligne, activation/désactivation à commande électrique
 - Protège les systèmes en aval
 - Donne la priorité aux zones de pression
 - Remplissage du système de commandes
 - Maintient la pression de la conduite en amont
- Valve composite d'ingénierie avec conception de qualité industrielle
 - Très durable, résistant aux produits chimiques et à la cavitation
 - Pas de boulons ni d'écrous internes
- Corps de valve HyFlow en « Y » avec design « Look Through »
 - Capacité de débit très élevée avec faible perte de pression
- Diaphragme « Flexible Super Travel » (FST) unitisé et bouchon guidé
 - Régulation précise et stable avec fermeture en douceur
 - Nécessite une faible pression d'ouverture et d'actionnement
 - Empêche l'érosion et la distorsion du diaphragme
- Conception facile d'utilisation
 - Réglage facile de la pression
 - Inspection et entretien simples en ligne

Applications types

- modernisation du pilotage des réseaux d'irrigation
- Solutions de contrôle du remplissage des lignes
- Systèmes de réduction de pression
- Parcelles éloignées et/ou surélevées
- Maintien de la pression de lavage à contre-courant des filtres Infield
- Systèmes d'irrigation économes en énergie

Fonctionnement:

Le Pilote de Réduction de la pression (PRP) 🔟 est raccordé hydrauliquement vers la chambre de commande de la vanne par le biais du Pilote de maintien de pression (PSP) [3] et de la vanne navette [4]. Le PSP commande la vanne vers la fermeture de l'accélérateur si la Pression amont [P1] descend en dessous du réglage. Lorsque [P1] dépasse le réglage, la PSP commute et permet au PRP de contrôler la vanne, en lui demandant de réduire la Pression aval [P2]. En réponse vers un signal électrique, le solénoïde [5] commute et met sous pression la vanne navette, qui bloque ensuite les pilotes et transmet la pression de la conduite dans la chambre de commande, fermant

Réduction et maintien de la pression

Données techniques

Pression nominale: 10 bar

Plage de pression de fonctionnement:

0.5-10 bar

Matériaux

Corps et couvercle:

Polyamide 6 & 30% GF

Membrane:

NR, tissu en nylon renforcé

Ressort:

Acier inoxydable

Accessoires circuit de contrôle

Pilote de réduction de pression: PC-SHARP-X-P

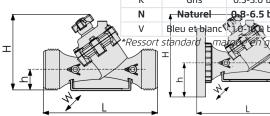
Pilote de maintien de pression: PC-SHARP-X-P

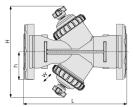
Plage de pression du pilote:

	•	•	
Ressort	Couleur du ressort	Plage de réglage	
J	Vert	0.2-1.7 bar	
K	Gris	0.5-3.0 bar	
N	A Naturel	0.8-6.5 bar	
V	Bleu et blanc	10-100 bar	
*Ressort	standard 🖵 ma	govern gras	
	T		

Tubes et raccords:

Polyéthylène et polypropylène

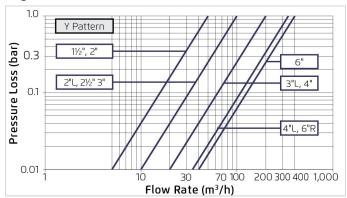

Solénoïde à impulsion:


S-982-3W P.B.

*Pour d'autres solénoïdes, veuillez consulter BERMAD

Données techniques

Pour d'autres modèles et types de raccordement, se référer à la page d'ingénierie complète de **BERMAD**.



Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblique	Taraudée	1.1	200	173	40	97	0.12	50
2"; DN50	Oblique	Taraudée	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
2½"; DN65	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
3" ; DN80	Oblique	Taraudée	1.6	298	199	55	135	0.15	100
3" ; DN80	Oblique	Brides en plastique	2.5	308	244	100	200	0.15	100
3" ; DN80	Oblique	Brides en métal	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblique	Taraudée	3	298	278	60	168	0.62	200
3"L; DN80L	Oblique	Brides en plastique	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblique	Brides en métal	4.6	308	317	100	200	0.62	200
4"; DN100	Oblique	Brides en plastique	4.6	350	329	112	224	0.62	200
4"; DN100	Oblique	Brides en métal	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblique	Brides en plastique	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblique	Brides en métal	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblique	Brides en métal	16.5	470	377	149	287	1.15	340
6" ; DN150		Rainuré	11	480	387	100	475	2x0.62	400
6"; DN150		Brides en plastique	12.5	504	387	143	475	2x0.62	400

CCDV = Volume de déplacement de la chambre de contrôle • Fileté = BSP & NPT sont disponibles. Filetage externe disponible uniquement pour 2" et 2½". • D'autres raccordements d'extrémité sont disponibles sur demande. Pour les dimensions et poids des adaptateurs ou des vannes avec adaptateurs, veuillez consulter le service client. Caractéristiques supplémentaires

Code	Description	Tailles disponibles
М	Limiteur d'ouverture	1½"-6" / DN40-150
5	Prise pression plastique	1½"-4" / DN40-100
Z	Assemblage d'indicateur de position	1½"-4"L / DN40-100L
V3	Adaptateurs PVC Victaulic 3"	3" / DN80
V4	Adaptateurs PVC Victaulic 4"	4" / DN100

Plage de débit

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \textcircled{\Delta} \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd