

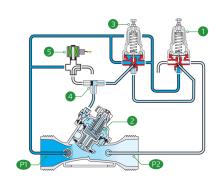
PRESSURE REDUCING & SUSTAINING VALVE

Model IR-123-55-3W-X

The BERMAD Model IR-123-55-3W-X is a hydraulically operated, diaphragm actuated control valve that sustains minimum preset upstream (back) pressure and reduces downstream pressure to a constant preset maximum. It either opens or shuts in response to an electric signal.

- [1] BERMAD Model IR-123-55-3W-X opens in response to electric signal, sustains supply pressure, controls laterals and distribution line fill-up, and reduces their operating pressure.
- [2] Electromagnetic Flow Meter
- [3] Combination Air Valve Model IR-C10
- [4] Smart Irrigation Controller-OMEGA
- [5] Hydraulic Control Valve Model IR-105-Z
- [6] Kinetic Air Valve Model IR-K10

Features & Benefits


- Line Pressure Driven, Electrically Controlled On/Off
 - Protects downstream systems
 - Prioritizes pressure zones
 - Controls system fill-up
 - Sustains upstream line pressure
- Engineered Composite Valve with Industrial Grade Design
 - Highly durable, chemical and cavitation resistant
 - No internal bolts and nuts
- hYflow 'Y' Valve Body with "Look Through" Design
 - Ultra-high flow capacity at low pressure loss
- Unitized "Flexible Super Travel" (FST) Diaphragm and Guided Plug
 - Accurate and stable regulation with smooth closing
 - Requires low opening and actuation pressure
 - Prevents diaphragm erosion and distortion
- User-Friendly Design
 - Easy pressure setting
 - Simple in-line inspection and service

Typical Applications

- Automated Irrigation Systems
- Line Fill-Up Control Solutions
- Pressure Reducing Systems
- Remote and/or Elevated Plots
- Infield Filters Backwash Pressure Sustaining
- Energy Saving Irrigation Systems

Operation:

The Pressure Reducing Pilot (PRP) 📵 is hydraulically connected to the Valve Control Chamber [2] through the Pressure Sustaining Pilot (PSP) [3] and the Shuttle Valve [4]. The PSP commands the valve to throttle closed should Upstream Pressure [P1] drop below setting. When [P1] risesabove setting, the PSP switches and allows the PRP to control the valve, commanding it to reduce Downstream Pressure [P2] . In response to an electric signal, the Solenoid [5] switches and pressurizes the shuttle valve, which then blocks the pilots and transmits the line pressure into the control chamber, shutting the valve.

Technical Data

Pressure Rating:

150 psi

Operating Pressure Range:

7-150 psi

Materials

Body & Cover:

Polyamide 6 & 30% GF

Diaphragm:

NR, Nylon fabric reinforced

Spring:

Stainless Steel

Control Loop Accessories

PR Pilot: PC-SHARP-X-P
PS Pilot: PC-SHARP-X-P

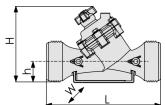
Pilot Spring Range:

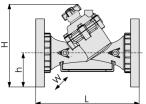
Spring	Spring Color	Setting range		
J	Green	3-25 psi		
K	Gray	7-43 psi		
N	Natural	12-95 psi		
V	Blue & White	15-150 psi		

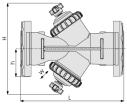
Standard spring - marked in bold

Tubing and Fittings:

Polyethylene and Polypropylene

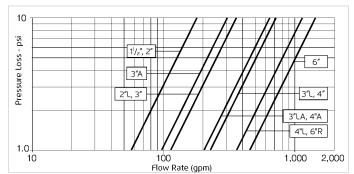

DC latch solenoid:


S-982-3W P.B.


*For other solenoids please consult <u>BERMAD</u>

Technical Specifications

For other patterns and end connection types, Please refer to <u>BERMAD</u> full engineering page.


Size	Pattern	End Connection	Weight (Lb)	L (In)	H (In)	h (ln)	W	CCDV (Gal)	cv
1½" ; DN40	Oblique	Threaded	2.4	7%	6%	1%	3%	0.026	58
2"; DN50	Oblique	Threaded	2.7	91/8	6%	15%	3%	0.026	58
2"L; DN50L	Oblique	Threaded	3	91/8	73/8	1¾	5%	0.033	116
2½"; DN65	Oblique	Threaded	3	91/8	73/8	1¾	5%	0.033	116
3"; DN80	Oblique	Threaded	4	11¾	7%	21/4	5%	0.033	116
3"; DN80	Oblique	Plastic Flanges	6	121/8	9%	4	7%	0.033	116
3"; DN80	Oblique	Metal Flanges	10	121/8	9%	4	7%	0.033	116
3"L; DN80L	Oblique	Threaded	7	11¾	91/8	23/8	6%	0.136	231
3"L; DN80L	Oblique	Plastic Flanges	8.2	121/8	121/2	4	7%	0.136	231
3"L; DN80L	Oblique	Metal Flanges	10.1	121/8	121/2	4	7%	0.136	231
4"; DN100	Oblique	Plastic Flanges	10	13%	13	41/2	8%	0.136	231
4"; DN100	Oblique	Metal Flanges	16.3	13%	13	41/2	8%	0.136	231
4"L; DN100L	Oblique	Plastic Flanges	20.2	17½	13%	41/2	9	0.253	393
4"L; DN100L	Oblique	Metal Flanges	24.7	17½	13%	41/2	9	0.253	393
6"R; DN150R	Oblique	Metal Flanges	36	181/2	14%	5%	11%	0.253	393
6"; DN150	Boxer	Grooved	26	19	151/4	4	18¾	2x0.136	462
6" ; DN150	Boxer	Plastic Flanges	27.6	19%	151/4	5%	18¾	2x0.136	462

CCDV = Control Chamber Displacement Volume • **Threaded** = BSP & NPT are available. External thread is available for 2" and 2½" only. • Other End Connections are available on request. For dimensions and weights of adapters or valves with adapters please consult with customer service.

Additional Features

Code	Description	Size Range
М	Flow Stem (*Exclude sizes 4"L, 6"R)	1½"-6"
5	Plastic Test Point	1½"-4"
Z	Manual Selector	1½"-4"L
V3	Victaulic PVC Adaptors 3"	3"
V4	Victaulic PVC Adaptors 4"	4"

Flow Chart

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Cv}\right)^2$$
 $Cv = gpm @ \Delta P \text{ of 1 psi}$ $Q = gpm$ $\Delta P = psi$

www.bermad.com