

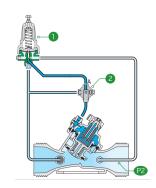
VANNE DE REDUCTION DE PRESSION

Modèle IR-120-Zb

La vanne de réduction de pression BERMAD est une vanne de régulation à commande hydraulique et à membrane qui réduit avec précision la pression en amont, même élevée, à une pression en aval très basse et stable, indépendamment des fluctuations de la demande ou des variations de la pression en amont

[1] Le Modèle IR-120-Zb de BERMAD établit une zone de pression réduite protégeant les lignes latérales et la ligne de distribution.

Caractéristiques et avantages


- Entraînement de pression de ligne, à commande hydraulique
 - Protège les systèmes en aval
- Pilote asservissant à réduction de pression
 - Vanne à pointeau intégrée dynamique
 - Réglable à 0,5 bar ; 7 psi
 - Hystérésis très faible
- Valve composite d'ingénierie avec conception de qualité industrielle
 - Très durable, résistant aux produits chimiques et à la cavitation
 - Pas de boulons ni d'écrous internes
- Corps de valve HyFlow en « Y » avec design « Look Through »
 - Capacité de débit très élevée avec faible perte de pression
- Diaphragme « Flexible Super Travel » (FST) unitisé et bouchon quidé
 - Régulation précise et stable avec fermeture en douceur
 - Nécessite une faible pression d'ouverture et d'actionnement
 - Empêche l'érosion du diaphragme et les contraintes mécaniques
- Inspection et entretien simples en ligne

Applications types

- Systèmes goutte à goutte
- Applications à basse pression de réglage
- Systèmes d'irrigation à basse pression
- Systèmes d'irrigation économes en énergie

Fonctionnement:

Le servo-pilote réducteur de pression [1] commande la vanne principale afin qu'elle se ferme progressivement, empêchant ainsi la pression en aval [P2] de dépasser le réglage du pilote, et qu'elle s'ouvre progressivement lorsque [P2] descend en dessous du réglage du pilote. Le sélecteur manuel 2 permet la fermeture manuelle locale.

IR-120-7h

Réduction de pression

Données techniques

Pression nominale: 10 bar

Plage de pression de fonctionnement:

0.5-10 bar

Matériaux

Corps et couvercle:

Polyamide 6 & 30% GF

Membrane:

NR, tissu en nylon renforcé

Ressort:

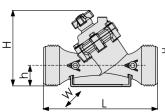
Acier inoxydable

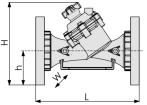
Accessoires circuit de contrôle

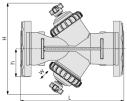
Pilote de réduction de pression: PC-S-A-P

Plage de pression du pilote:

Ressort	Couleur du ressort	Plage de réglage
J	Vert	0.2-1.7 bar
K	Gris	0.5-3.0 bar

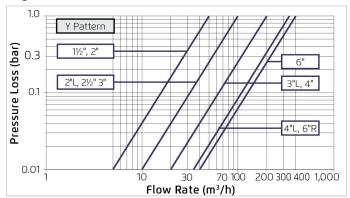

^{*}Ressort standard – marqué en gras


Tubes et raccords:


Polyéthylène et polypropylène

Données techniques

Pour d'autres modèles et types de raccordement, se référer à la page d'ingénierie complète de <u>BERMAD</u>.



Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblique	Taraudée	1.1	200	173	40	97	0.12	50
2"; DN50	Oblique	Taraudée	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
2½"; DN65	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
3" ; DN80	Oblique	Taraudée	1.6	298	199	55	135	0.15	100
3" ; DN80	Oblique	Brides en plastique	2.5	308	244	100	200	0.15	100
3" ; DN80	Oblique	Brides en métal	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblique	Taraudée	3	298	278	60	168	0.62	200
3"L; DN80L	Oblique	Brides en plastique	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblique	Brides en métal	4.6	308	317	100	200	0.62	200
4"; DN100	Oblique	Brides en plastique	4.6	350	329	112	224	0.62	200
4"; DN100	Oblique	Brides en métal	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblique	Brides en plastique	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblique	Brides en métal	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblique	Brides en métal	16.5	470	377	149	287	1.15	340
6" ; DN150		Rainuré	11	480	387	100	475	2x0.62	400
6" ; DN150		Brides en plastique	12.5	504	387	143	475	2x0.62	400

Caractéristiques supplémentaires

Code	Description	Tailles disponibles
М	Limiteur d'ouverture	1½"-6" / DN40-150
5	Prise pression plastique	1½"-4" / DN40-100
Z	Assemblage d'indicateur de position	1½"-4"L / DN40-100L
V3	Adaptateurs PVC Victaulic 3"	3" / DN80
V4	Adaptateurs PVC Victaulic 4"	4" / DN100

Plage de débit

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd