

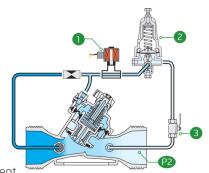
VANNE DE REDUCTION DE PRESSI

Modèle IR-120-55-2W

Le Modèle IR-120-55-2W de BERMAD est une vanne de régulation à commande hydraulique actionnée par une membrane qui réduit une pression amont plus élevée vers une pression aval constante plus basse, indépendamment des fluctuations de la demande ou de la variation de la pression amont. Il s'ouvre ou se ferme en réponse vers un signal électrique.

- [1] Le Modèle IR-120-55-2W de Bermad s'ouvre en réponse vers un signal électrique établissant une zone de pression réduite.
- [2] Vanne d'air combinée modèle IR-C10
- [3] Contrôleur d'irrigation intelligent OMEGA

Caractéristiques et avantages


- Commande par pression de ligne, activation/désactivation à commande électrique
 - Protège les systèmes en aval
- Valve composite d'ingénierie avec conception de qualité industrielle
 - Adaptable sur site à une large gamme de connexions finales
 - Raccords à bride articulés qui éliminent la flexion des lignes et les contraintes hydrauliques
 - Très durable, résistant aux produits chimiques et à la cavitation
- Corps de valve HyFlow en « Y » avec design « Look Through »
 - Capacité de débit très élevée avec faible perte de pression
- Diaphragme « Flexible Super Travel » (FST) unitisé et bouchon quidé
 - Régulation précise et stable avec fermeture
 - Nécessite une faible pression d'actionnement
 - Empêche l'érosion et la distorsion du diaphragme
- Conception facile d'utilisation
 - Réglage facile de la pression
 - Inspection et entretien simples en ligne

Applications types

- modernisation du pilotage des réseaux d'irrigation
- Systèmes de réduction de pression
- Parcelles éloignées et/ou surélevées
- Tête et poste de distribution d'irrigation
- Systèmes d'irrigation à basse pression
- Systèmes d'irrigation économes en énergie

Fonctionnement:

L'ouverture du solénoïde 🚺 ouvre la vanne. Le pilote de réduction de pression [2] commande à la vanne de se fermer si la pression en aval [P2] dépasse la valeur de consigne et de s'ouvrir progressivement lorsqu'elle descend en dessous de la valeur de consigne. La fermeture du solénoïde provoque la fermeture de la vanne. Le robinet à boisseau [3] en aval permet la fermeture manuelle.

IR-120-55-2W

Réduction de pression

Données techniques

Pression nominale:

10 bar

Plage de pression de fonctionnement:

0.5-10 bar

Matériaux

Corps et couvercle:

Polyamide 6 & 30% GF

Membrane:

NR, tissu en nylon renforcé

Ressort:

Acier inoxydable

Accessoires circuit de contrôle

Pilote de réduction de pression: PC-20-A-P

Plage de pression du pilote:

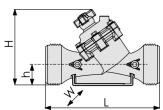
Ressort	Couleur du ressort	Plage de réglage		
K	Gris	0.5-3.0 bar		
N	Naturel	0.8-6.5 bar		
V	Bleu et blanc	1.0-10.0 bar		

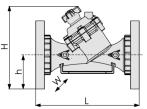
*Ressort standard – marqué en gras

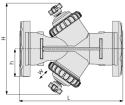
Tubes et raccords:

Polyéthylène et polypropylène

Solénoïde AC:

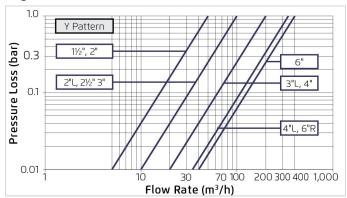

S-390-T-2W


Solénoïde à impulsion:


S-392-T-2W

Données techniques

Pour d'autres modèles et types de raccordement, se référer à la page d'ingénierie complète de <u>BERMAD</u>.



Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblique	Taraudée	1.1	200	173	40	97	0.12	50
2" ; DN50	Oblique	Taraudée	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
2½"; DN65	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
3"; DN80	Oblique	Taraudée	1.6	298	199	55	135	0.15	100
3"; DN80	Oblique	Brides en plastique	2.5	308	244	100	200	0.15	100
3"; DN80	Oblique	Brides en métal	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblique	Taraudée	3	298	278	60	168	0.62	200
3"L; DN80L	Oblique	Brides en plastique	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblique	Brides en métal	4.6	308	317	100	200	0.62	200
4"; DN100	Oblique	Brides en plastique	4.6	350	329	112	224	0.62	200
4"; DN100	Oblique	Brides en métal	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblique	Brides en plastique	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblique	Brides en métal	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblique	Brides en métal	16.5	470	377	149	287	1.15	340
6" ; DN150		Rainuré	11	480	387	100	475	2x0.62	400
6" ; DN150		Brides en plastique	12.5	504	387	143	475	2x0.62	400

Caractéristiques supplémentaires

Code	Description	Tailles disponibles
М	Limiteur d'ouverture	1½"-6" / DN40-150
5	Prise pression plastique	1½"-4" / DN40-100
V3	Adaptateurs PVC Victaulic 3"	3" / DN80
V4	Adaptateurs PVC Victaulic 4"	4" / DN100

Plage de débit

Circuit à 2 voies « Perte de charge ajoutée » (pour « V » inférieur à 2 m/s): 0.3 bar

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd