

VALVOLA DI RIDUZIONE **DELLA PRESSIONE**

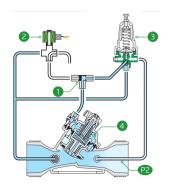
Modello IR-120-55-b

La valvola BERMAD modello IR-120-55-b è una valvola di controllo a diaframma, azionata idraulicamente, che riduce con precisione la pressione a monte più elevata a una pressione a valle preimpostata molto bassa e stabile, indipendentemente dalle fluttuazioni della domanda o dalla variazione della pressione a monte. Si apre o si chiude in risposta a un segnale elettrico.

[1] Il modello BERMAD IR-120-55-b si apre in risposta al segnale elettrico e stabilisce una zona di pressione ridotta che protegge le linee laterali e di distribuzione.

Caratteristiche e vantaggi

- Accensione/spegnimento azionato dalla pressione di linea, controllato elettricamente
 - Protegge i sistemi a valle
- Riduttore di Pressione Controllato da Servopilota
 - Valvola a spillo dinamica integrata
 - Impostabile a 0,5 bar; 7 psi
 - Isteresi molto bassa
- Valvola in Plastica Ingegnerizzata con Design di Livello Industriale
 - Altamente durevole, resistente agli agenti chimici e alla cavitazione
 - Privo di bulloni e dadi interni
- Corpo Valvola hYflow Y con design "Look Through"
 - Portata ultra elevata a bassa perdita di pressione
- Diaframma "flessibile a supercorsa" (FST) unificato con otturatore guidato
 - Regolazione precisa e stabile con chiusura facile
 - Richiede una bassa pressione di apertura e azionamento
 - Previene l'erosione e la distorsione del diaframma


Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Sistemi Drip-Tape
- Applicazioni a bassa pressione impostata
- Trame remote e/o sopraelevate
- Centri di Distribuzione
- Sistemi di irrigazione a bassa pressione
- Sistemi di Irrigazione a Risparmio Energetico

Operazioni:

La valvola shuttle 🛛 collega idraulicamente il solenoide 🔁 o il servopilota di riduzione della pressione (PRSP) [3] alla camera di controllo della valvola [4]. Quando il solenoide è chiuso, il PRSP comanda la valvola a farfalla di chiudersi, impedendo alla pressione a valle [P2] di superare il valore impostato dal pilota. In risposta a un segnale elettrico, il solenoide commuta, indirizzando la pressione di linea attraverso la valvola Shuttle nella camera di controllo. Questo provoca la chiusura della valvola. Il solenoide dispone anche di una chiusura manuale locale.

Riduttore di Pressione

Dati Tecnici

Pressione d'esercizio: 10 bar

Intervallo di Pressione Operativa:

0.5-10 bar

Materiali

Corpo e Coperchio:

Poliammide 6 e 30% VF

Diaframma:

NR, Tessuto in nylon rinforzato

Molla:

Acciaio Inox

Accessori del Circuito

Pilota PRV: PC-S-A-P

Range molla del pilota:

Molla	Colore Molla	Range di Regolazione
J		0.2-1.7 bar
K	Grigio	0.5-3.0 bar

Molla standard - indicata in grassetto

x000D

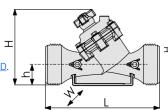
Tubi e raccordi:

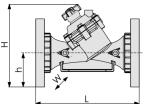
Polietilene e poliprolpilene

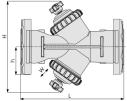
Solenoide AC:

S-390-T-3W P.B.-24 V AC

Solenoide DC bistabile:

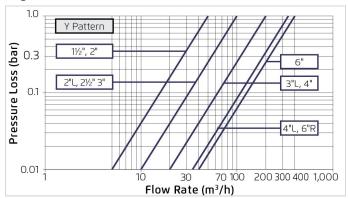

S-392-T-3W-9-20 V DC


Latch


Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD.



Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Obliquo	Filettato	1.1	200	173	40	97	0.12	50
2" ; DN50	Obliquo	Filettato	1.2	230	173	40	97	0.12	50
2"L; DN50L	Obliquo	Filettato	1.5	230	187	43	135	0.15	100
2½"; DN65	Obliquo	Filettato	1.5	230	187	43	135	0.15	100
3"; DN80	Obliquo	Filettato	1.6	298	199	55	135	0.15	100
3"; DN80	Obliquo	Flange di Plastica	2.5	308	244	100	200	0.15	100
3"; DN80	Obliquo	Flange metalliche	4.4	308	244	100	200	0.15	100
3"L; DN80L	Obliquo	Filettato	3	298	278	60	168	0.62	200
3"L; DN80L	Obliquo	Flange di Plastica	3.7	308	317	100	200	0.62	200
3"L; DN80L	Obliquo	Flange metalliche	4.6	308	317	100	200	0.62	200
4"; DN100	Obliquo	Flange di Plastica	4.6	350	329	112	224	0.62	200
4"; DN100	Obliquo	Flange metalliche	7.4	350	329	112	224	0.62	200
4"L; DN100L	Obliquo	Flange di Plastica	9.2	442	340	112	226	1.15	340
4"L; DN100L	Obliquo	Flange metalliche	11.2	442	340	112	226	1.15	340
6"R; DN150R	Obliquo	Flange metalliche	16.5	470	377	149	287	1.15	340
6" ; DN150	Boxer	Scanalata-Victaulic	11	480	387	100	475	2x0.62	400
6" ; DN150	Boxer	Flange di Plastica	12.5	504	387	143	475	2x0.62	400

Caratteristiche Aggiuntive

Codice	Descrizione	Gamma di Dimensioni
М	Chiusura meccanica	1½"-6" / DN40-150
5	Per manometro plastica	1½"-4" / DN40-100
V3	Adattatori PVC Victaulic 3"	3" / DN80
V4	Adattatori PVC Victaulic 4"	4" / DN100

diagramma di flusso

Circuito a 2 vie "Perdita di Carico Aggiunta" (per "V" inferiore a 2 m/s): 0,3 bar

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = \text{bar}$

www.bermad.com