

PRESSURE REDUCING VALVE

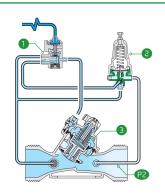
With 2/3-Way (Servo) Control & Hydraulic Relay, Normally Closed

Model IR-120-54-b

The BERMAD Normally Closed, Pressure Reducing Valve with Hydraulic Control, is a hydraulically operated, diaphragm actuated control valve that reduces higher upstream pressure to lower constant downstream pressure regardless of fluctuating demand, and opens fully upon line pressure drop. It is a Normally Closed valve, which opens in response to a remote pressure command and shuts in the absence of that command.

[1] BERMAD Model IR-120-54-b opens upon pressure rise command, and establishes reduced pressure zone protecting laterals and distribution line.

Features & Benefits


- Line Pressure Driven, Normally Closed
 - Closes upon command pressure failure
 - Amplifies and relays weak remote commands
- Pressure Reducing Servo Pilot Controlled
 - Dynamic integrated needle valve
 - Settable to 0.5 bar; 7 psi
 - Very low hysteresis
- Engineered Composite Valve with Industrial Grade Design
 - Highly durable, chemical and cavitation resistant
 - No internal bolts and nuts
- hYflow 'Y' Valve Body with "Look Through" Design
 - Ultra-high flow capacity at low pressure loss
- Unitized "Flexible Super Travel" (FST) Diaphragm and Guided Plug
 - Accurate and stable regulation with smooth closing
 - Requires low opening and actuation pressure
 - Prevents diaphragm erosion and distortion

Typical Applications

- Automated Irrigation Systems
- Drip-Tape Systems
- Low Set Pressure Applications
- Remote and/or Elevated Plots
- Distribution Centers
- Low Supplied Pressure Irrigation Systems
- Energy Saving Irrigation Systems

Operation:

The 3-Way Hydraulic Relay Valve (3W-HRV) [1] hydraulically connects the Pressure Reducing Servo Pilot (PRSP) [2] to the Valve Control Chamber [3] . The PRSP commands the Valve to throttle closed, preventing Downstream Pressure [P2] from rising above pilot setting. The 3W-HRV switches upon pressure drop command, directing line pressure into the control chamber, and thereby causing the main Valve to shut. The 3W-HRV also features local manual closing.

Technical Data

Pressure Rating:

10 bar

Operating Pressure Range:

0.5-10 bar

Materials

Body & Cover:

Polyamide 6 & 30% GF

Diaphragm:

NR, Nylon fabric reinforced

Spring:

Stainless Steel

Control Loop Accessories

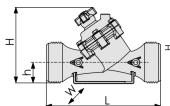
PR Pilot: PC-S-A-P

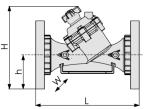
Pilot Spring Range:

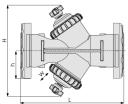
Spring	Spring Color	Setting range		
J	Green	0.2-1.7 bar		
K	Gray	0.5-3.0 bar		

Standard spring - marked in bold

Tubing and Fittings:

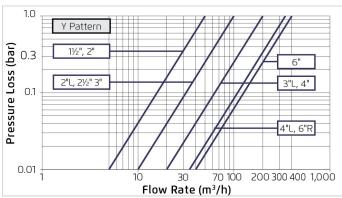

Polyethylene and Polypropylene


*3W-HRV;


- Standard spring 0-10 m'
- Optional 10-20 m'

Technical Specifications

For other patterns and end connection types, Please refer to <u>BERMAD</u> full engineering page.


Size	Pattern	End Connection	Weight (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblique	Threaded	1.1	200	173	40	97	0.12	50
2" ; DN50	Oblique	Threaded	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblique	Threaded	1.5	230	187	43	135	0.15	100
2½" ; DN65	Oblique	Threaded	1.5	230	187	43	135	0.15	100
3" ; DN80	Oblique	Threaded	1.6	298	199	55	135	0.15	100
3" ; DN80	Oblique	Plastic Flanges	2.5	308	244	100	200	0.15	100
3" ; DN80	Oblique	Metal Flanges	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblique	Threaded	3	298	278	60	168	0.62	200
3"L; DN80L	Oblique	Plastic Flanges	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblique	Metal Flanges	4.6	308	317	100	200	0.62	200
4" ; DN100	Oblique	Plastic Flanges	4.6	350	329	112	224	0.62	200
4" ; DN100	Oblique	Metal Flanges	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblique	Plastic Flanges	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblique	Metal Flanges	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblique	Metal Flanges	16.5	470	377	149	287	1.15	340
6" ; DN150	Boxer	Grooved	11	480	387	100	475	2x0.62	400
6" ; DN150	Boxer	Plastic Flanges	12.5	504	387	143	475	2x0.62	400

CCDV = Control Chamber Displacement Volume • Threaded = BSP & NPT are available. External thread is available for 2" and 2½" only. • Other End Connections are available on request. For dimensions and weights of adapters or valves with adapters please consult with customer service.

Additional Features

Code	Description	Size Range
М	Flow Stem (*Exclude sizes 4"L, 6"R)	1½"-6" / DN40-150
5	Plastic Test Point	1½"-4" / DN40-100
Z	Manual Selector	1½"-4"L / DN40-100L
V3	Victaulic PVC Adaptors 3"	3" / DN80
V4	Victaulic PVC Adaptors 4"	4" / DN100

Flow Chart

2-Way circuit "Added Head Loss" (for "V" below 2 m/s): 0.3 bar

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = \text{bar}$

www.bermad.com