

PRESSURE REDUCING VALVE

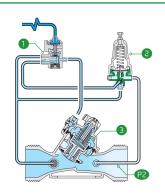
With 2/3-Way (Servo) Control & Hydraulic Relay, Normally Closed

Model IR-120-54-b

The BERMAD Normally Closed, Pressure Reducing Valve with Hydraulic Control, is a hydraulically operated, diaphragm actuated control valve that reduces higher upstream pressure to lower constant downstream pressure regardless of fluctuating demand, and opens fully upon line pressure drop. It is a Normally Closed valve, which opens in response to a remote pressure command and shuts in the absence of that command.

[1] BERMAD Model IR-120-54-b opens upon pressure rise command, and establishes reduced pressure zone protecting laterals and distribution line.

Features & Benefits


- Line Pressure Driven, Normally Closed
 - Closes upon command pressure failure
 - Amplifies and relays weak remote commands
- Pressure Reducing Servo Pilot Controlled
 - Dynamic integrated needle valve
 - Settable to 0.5 bar; 7 psi
 - Very low hysteresis
- Engineered Composite Valve with Industrial Grade Design
 - Highly durable, chemical and cavitation resistant
 - No internal bolts and nuts
- hYflow 'Y' Valve Body with "Look Through" Design
 - Ultra-high flow capacity at low pressure loss
- Unitized "Flexible Super Travel" (FST) Diaphragm and Guided Plug
 - Accurate and stable regulation with smooth closing
 - Requires low opening and actuation pressure
 - Prevents diaphragm erosion and distortion

Typical Applications

- Automated Irrigation Systems
- Drip-Tape Systems
- Low Set Pressure Applications
- Remote and/or Elevated Plots
- Distribution Centers
- Low Supplied Pressure Irrigation Systems
- Energy Saving Irrigation Systems

Operation:

The 3-Way Hydraulic Relay Valve (3W-HRV) [1] hydraulically connects the Pressure Reducing Servo Pilot (PRSP) [2] to the Valve Control Chamber [3] . The PRSP commands the Valve to throttle closed, preventing Downstream Pressure [P2] from rising above pilot setting. The 3W-HRV switches upon pressure drop command, directing line pressure into the control chamber, and thereby causing the main Valve to shut. The 3W-HRV also features local manual closing.

100 Series Pressure Reducing

Technical Data Pressure Rating:

150 psi

Operating Pressure Range:

7-150 psi

Materials

Body & Cover:

Polyamide 6 & 30% GF

Diaphragm:

NR, Nylon fabric reinforced

Spring:

Stainless Steel

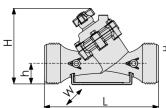
Control Loop Accessories

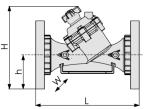
PR Pilot: PC-S-A-P

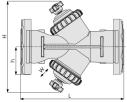
Pilot Spring Range:

Spring	Spring Color	Setting range			
J	Green	3-25 psi			
K	Gray	7-43 psi			
Standard spring - marked in bold					

Tubing and Fittings:

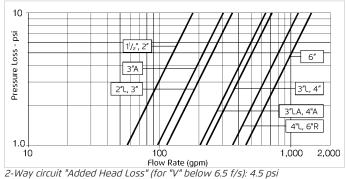

Polyethylene and Polypropylene


*3W-HRV;


- Standard spring 0-33 ft'
- Optional 33-66 ft'

Technical Specifications

For other patterns and end connection types, Please refer to **BERMAD** full engineering page.


Size	Pattern	End Connection	Weight (Lb)	L (In)	H (In)	h (ln)	W	CCDV (Gal)	cv
1½" ; DN40	Oblique	Threaded	2.4	7%	6%	1%	3%	0.026	58
2" ; DN50	Oblique	Threaded	2.7	9%	6%	15/8	3%	0.026	58
2"L ; DN50L	Oblique	Threaded	3	9%	73/8	1¾	5%	0.033	116
2½" ; DN65	Oblique	Threaded	3	9%	73/8	1¾	5%	0.033	116
3"; DN80	Oblique	Threaded	4	11¾	7%	21/4	5%	0.033	116
3"; DN80	Oblique	Plastic Flanges	6	121/8	9%	4	7%	0.033	116
3"; DN80	Oblique	Metal Flanges	10	121/8	9%	4	7%	0.033	116
3"L; DN80L	Oblique	Threaded	7	11¾	9%	23/8	6%	0.136	231
3"L; DN80L	Oblique	Plastic Flanges	8.2	121/8	121/2	4	7%	0.136	231
3"L; DN80L	Oblique	Metal Flanges	10.1	121/8	121/2	4	7%	0.136	231
4"; DN100	Oblique	Plastic Flanges	10	13%	13	41/2	8%	0.136	231
4"; DN100	Oblique	Metal Flanges	16.3	13%	13	41/2	8%	0.136	231
4"L; DN100L	Oblique	Plastic Flanges	20.2	171/2	13%	41/2	9	0.253	393
4"L; DN100L	Oblique	Metal Flanges	24.7	171/2	13%	41/2	9	0.253	393
6"R ; DN150R	Oblique	Metal Flanges	36	181/2	14%	5%	113/8	0.253	393
6" ; DN150	Boxer	Grooved	26	19	151/4	4	18¾	2x0.136	462
6" ; DN150	Boxer	Plastic Flanges	27.6	19%	151/4	5%	18¾	2x0.136	462

CCDV = Control Chamber Displacement Volume • Threaded = BSP & NPT are available. External thread is available for 2" and 21/2" only. • Other End Connections are available on request. For dimensions and weights of adapters or valves with adapters please consult with customer service.

Additional Features

Code	Description	Size Range
М	Flow Stem (*Exclude sizes 4"L, 6"R)	1½"-6"
5	Plastic Test Point	1½"-4"
Z	Manual Selector	1½"-4"L
V3	Victaulic PVC Adaptors 3"	3"
V4	Victaulic PVC Adaptors 4"	4"

Flow Chart

Differential Pressure & Flow Calculation

$$\Delta P = \left(\frac{Q}{Cv}\right)^2$$
 $Cv = gpm @ \Delta P \text{ of 1 psi}$ $Q = gpm$ $\Delta P = psi$

www.bermad.com