

Redução de pressão

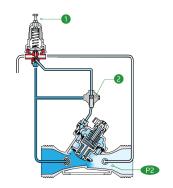
VÁLVULA REDUTORA DE PRESSÃO

Modelo IR-120-3W-XZ

A Válvula Redutora de Pressão da BERMAD é uma válvula de controle operada hidraulicamente e acionada por diafragma, que reduz a pressão mais alta do fluxo de entrada para uma pressão constante e mais baixa do fluxo de saída e abre totalmente mediante queda na pressão de linha.

- [1] O modelo IR-120-3W-XZ da BERMAD estabelece uma zona de pressão reduzida, protegendo as linhas de distribuição
- [2] Válvula Ventosa Combinada Modelo IR-C10
- [3] Válvula Ventosa Combinada Modelo IR-C30

Benefícios e Características


- Controlada Hidraulicamente, Acionada por Pressão de Linha
 - Protege sistemas do fluxo de saída
 - Abre totalmente mediante queda na pressão de linha
- Válvula em Compósito de Engenharia com Design de Classificação Industrial
 - Adaptável no local a uma ampla variedade de conexões de encaixe
 - Conexões de flange articuladas que eliminam a flexão da linha e as tensões hidráulicas
 - Altamente durável, resistente a produtos químicos e cavitação
- Corpo da válvula hYflow 'Y' com design "Transparente"
 - Capacidade de fluxo ultra-alta com baixa perda de pressão
- Diafragma de Curso Superflexível (FST) Unificado com Obturador com Guia
 - Regulagem precisa e estável com fechamento suave
 - Requer baixa pressão de atuação
 - Evita a erosão e distorção do diafragma
 - Inspeção e Serviço Simples em Linha

Aplicações Típicas

- Sistemas de Irrigação Automatizados
- Sistemas de Redução de Pressão
- Sistemas Sujeitos a Diferentes Pressões de Alimentação
- Centros de Distribuição
- Sistemas de Irrigação com Economia de Energia

Operação:

O Piloto Redutor de Pressão 间 comanda a válvula principal para que seja fechada por estrangulamento, caso a Pressão do Fluxo de Saída [P2] aumente acima da configuração piloto e abra totalmente quando a pressão cair abaixo da configuração piloto. O Seletor Manual [2] permite o fechamento manual local.

Dados Técnicos

Classe de Pressão:

10 bar

Faixa de Pressão Operacional:

0.5-10 bar

Materiais

Corpo e Tampa:

Poliamida 6 e 30% GF

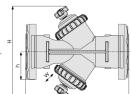
Diafragma:

NR, tecido de nylon reforçado

Mola:

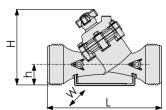
Aço inox

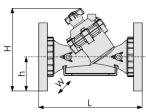
Acessórios do Circuito de Controle


Piloto PR: PC-SHARP-X-P

Faixa da Mola do Piloto:

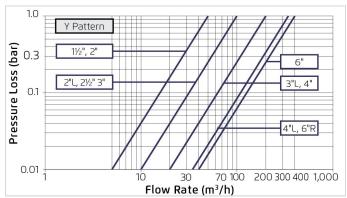
Mola	Cor da Mola	Faixa de ajuste
J		0.2-1.7 bar
K		0.5-3.0 bar
N		0.8-6.5 bar
V		1.0-10.0 bar


Mola padrão - marcada em negrito


Tubulação e Conexões: Polietileno

Especificações Técnicas

Para outros tipos de padrões e conexões de encaixe, consulte a página de engenharia completa da **BERMAD**.



Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	ΚV
1½" ; DN40	Oblíquo	Rosqueado	1.1	200	173	40	97	0.12	50
2" ; DN50	Oblíquo	Rosqueado	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblíquo	Rosqueado	1.5	230	187	43	135	0.15	100
2½"; DN65	Oblíquo	Rosqueado	1.5	230	187	43	135	0.15	100
3" ; DN80	Oblíquo	Rosqueado	1.6	298	199	55	135	0.15	100
3"; DN80	Oblíquo	Flanges de plástico	2.5	308	244	100	200	0.15	100
3" ; DN80	Oblíquo	Flanges de metal	4.4	308	244	100	200	0.15	100
3"L; DN80L	Oblíquo	Rosqueado	3	298	278	60	168	0.62	200
3"L; DN80L	Oblíquo	Flanges de plástico	3.7	308	317	100	200	0.62	200
3"L; DN80L	Oblíquo	Flanges de metal	4.6	308	317	100	200	0.62	200
4" ; DN100	Oblíquo	Flanges de plástico	4.6	350	329	112	224	0.62	200
4" ; DN100	Oblíquo	Flanges de metal	7.4	350	329	112	224	0.62	200
4"L; DN100L	Oblíquo	Flanges de plástico	9.2	442	340	112	226	1.15	340
4"L; DN100L	Oblíquo	Flanges de metal	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblíquo	Flanges de metal	16.5	470	377	149	287	1.15	340
6" ; DN150	Serie 100 padrão duplo	Ranhurado	11	480	387	100	475	2x0.62	400
6" ; DN150	Serie 100 padrão duplo	Flanges de plástico	12.5	504	387	143	475	2x0.62	400

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis. A rosca externa está disponível somente para 2" e 2½". • Outras Conexões de Encaixe estão disponíveis mediante solicitação. Para dimensões e pesos de adaptadores ou válvulas com adaptadores, consulte o serviço de atendimento ao cliente. Características Adicionais

Código	Descrição	Faixa de Tamanho
М	Fecho mecânico	1½"-6" / DN40-150
5	Ponto de Teste Plástico	1½"-4" / DN40-100
V3	Adaptadores em PVC Victaulic 3"	3" / DN80
V4	Adaptadores em PVC Victaulic 4"	4" / DN100

Gráfico de Fluxo

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \textcircled{D} \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros