

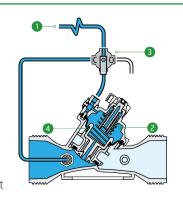
VANNE DE CONTRÔLE HYDRAULIQUE

Modèle IR-105-Z

La vanne de commande hydraulique de BERMAD est une vanne de régulation à commande hydraulique actionnée par une membrane qui s'ouvre et se ferme en réponse à une commande de pression locale ou à distance.

- [1] Le Modèle IR-105-Z de BERMAD s'ouvre sur commande manuelle locale.
- [2] Vanne d'air combinée modèle IR-C10
- [3] Vanne d'air combinée modèle IR-C10
- [4] Débitmètre électromagnétique
- [5] Vanne de maintien de pression Modèle IR-130-55-3W-X

Caractéristiques et avantages


- Vanne de contrôle hydraulique
 - Piloté par la pression de ligne
 - Commande hydraulique marche/arrêt
- Valve composite d'ingénierie avec conception de qualité industrielle
 - Adaptable sur site à une large gamme de connexions finales
 - Très durable, résistant aux produits chimiques et à la cavitation
- Corps de valve HyFlow en « Y » avec design « Look Through »
 - Capacité de débit très élevée avec faible perte
- Diaphragme « Flexible Super Travel » (FST) unitisé et bouchon quidé
 - Régulation précise et stable avec fermeture en douceur
 - Nécessite une faible pression d'actionnement
 - Empêche l'érosion et la distorsion du diaphragme
 - Inspection et entretien simples en ligne

Applications types

- modernisation du pilotage des réseaux d'irrigation
- Tête et poste de distribution d'irrigation
- Systèmes d'irrigation à basse pression
- Systèmes d'irrigation économes en énergie

Fonctionnement:

La commande hydraulique 🗻 est appliquée à la chambre de commande [2] via le sélecteur manuel [3]. Cela crée une force de fermeture supérieure qui déplace l'assemblage du diaphragme [4] vers une position fermée. La décharge de la pression de la chambre de commande, en tournant le sélecteur manuel, provoque la pression de la conduite agissant sur la partie inférieure de l'ensemble diaphragme pour déplacer la vanne vers une position ouverte.

IR-105-Z

Contrôle marche/arrêt

Données techniques

Pression nominale: 10 bar

Plage de pression de fonctionnement:

0.5-10 bar

Matériaux

Corps et couvercle:

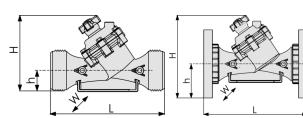
Polyamide 6 & 30% GF

Membrane:

NR, tissu en nylon renforcé

Ressort:

Acier inoxydable

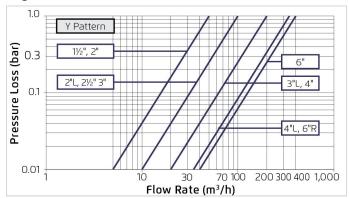

Accessoires circuit de contrôle

Tubes et raccords:

Polyéthylène et polypropylène

Données techniques

Pour d'autres modèles et types de raccordement, se référer à la page d'ingénierie complète de <u>BERMAD</u>.


Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	κv
1½"; DN40	Oblique	Taraudée	1.1	200	173	40	97	0.12	50
2"; DN50	Oblique	Taraudée	1.2	230	173	40	97	0.12	50
2"L; DN50L	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
21/2"; DN65	Oblique	Taraudée	1.5	230	187	43	135	0.15	100
3"; DN80	Oblique	Taraudée	1.6	298	199	55	135	0.15	100
3"; DN80	Oblique	Brides en métal	4.4	308	244	100	200	0.15	100
3"; DN80	Oblique	Brides en plastique	2.5	308	244	100	200	0.15	100
3"L; DN80L	Oblique	Taraudée	3	298	278	60	168	0.62	200
3"L; DN80L	Oblique	Brides en métal	4.6	308	317	100	200	0.62	200
3"L; DN80L	Oblique	Brides en plastique	3.7	308	317	100	200	0.62	200
4"; DN100	Oblique	Brides en métal	7.4	350	329	112	224	0.62	200
4"; DN100	Oblique	Brides en plastique	4.6	350	329	112	224	0.62	200
4"L; DN100L	Oblique	Brides en métal	11.2	442	340	112	226	1.15	340
4"L; DN100L	Oblique	Brides en plastique	9.2	442	340	112	226	1.15	340
6"R; DN150R	Oblique	Brides en métal	16.5	470	377	149	287	1.15	340
6"; DN150		Rainuré	11	480	387	100	475	2x0.62	400
6"; DN150		Brides en plastique	12.5	504	387	143	475	2x0.62	400

CCDV = Volume de déplacement de la chambre de contrôle • **Fileté** = BSP & NPT sont disponibles. Filetage externe disponible uniquement pour 2" et 2½". • D'autres raccordements d'extrémité sont disponibles sur demande. Pour les dimensions et poids des adaptateurs ou des vannes avec

adaptateurs, veuillez consulter le service client. Caractéristiques supplémentaires

Code	Description	Tailles disponibles
М	Limiteur d'ouverture	1½"-6" / DN40-150
5	Prise pression plastique	1½"-4" / DN40-100
V3	Adaptateurs PVC Victaulic 3"	3" / DN80
V4	Adaptateurs PVC Victaulic 4"	4" / DN100

Plage de débit

Circuit à 2 voies « Perte de charge ajoutée » (pour « V » inférieur à 2 m/s): 0.3 bar

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd