

VANNE DE DÉCHARGE RAPIDE

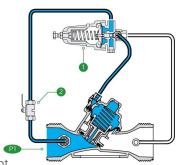
Pour Haute Pression

Modèle IR-13Q-HP-2W

Le Modèle IR-13Q-HP-2W de BERMAD est une vanne de régulation à commande hydraulique actionnée par une membrane conçue vers une réduction de la pression de conduite excessive lorsqu'elle dépasse le maximum prédéfini. Il répond aux augmentations de pression du système immédiatement, avec précision et avec une répétabilité élevée, en s'ouvrant complètement. Le Modèle IR-13Q-HP-2W de BERMAD assure une fermeture étanche en douceur.

- [1] Le Modèle IR-13Q-HP-2W de BERMAD protège le système contre les pics de pression.
- [2] Modèle de soupape de réduction de pression IR-120-50-HP-3W-XZ
- [3] Vanne d'air combinée modèle IR-C10
- [4] Compteur d'eau électromagnétique Modèle M10
- [5] Vanne d'air combinée modèle IR-C10

Caractéristiques et avantages


- Vanne de contrôle hydraulique
 - Piloté par la pression de ligne
 - Temps de réponse court
 - Étanchéité à long terme
- Valve composite d'ingénierie avec conception de qualité industrielle
 - Adaptable sur site à une large gamme de connexions finales
 - Très durable, résistant aux produits chimiques et à la cavitation
- Corps de valve HyFlow en « Y » avec design « Look Through »
 - Capacité de débit très élevée avec faible perte de pression
- Diaphragme « Flexible Super Travel » (FST) unitisé et bouchon quidé
 - Régulation précise et stable avec fermeture en douceur
 - Nécessite une faible pression d'actionnement
 - Empêche l'érosion et la distorsion du diaphragme
 - Inspection et entretien simples en ligne

Applications types

- Protection du système contre les éclatements
- Élimination des pics de pression momentanés
- Indication visuelle en cas de défaillance du système
- Protection contre l'éclatement du filtre

Fonctionnement:

Le pilote de décharge de pression [1] commande l'ouverture immédiate de la vanne si la pression en amont [P1] dépasse brusquement le réglage du pilote, et sa fermeture en douceur lorsqu'elle tombe en dessous du réglage du pilote, assurant ainsi une étanchéité parfaite. Le robinet à boisseau [2] permet de tester le fonctionnement manuel.

IR-13Q-HP-2W

Anti-bélier et soupape de décharge de pressio

Données techniques

Pression nominale: 16 bar

Plage de pression de fonctionnement:

0.5-16 bar

Matériaux

Corps et couvercle:

Acier inoxydable

Membrane:

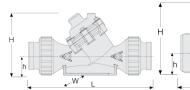
EPDM

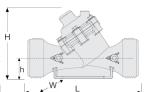
Ressort: Acier inoxydable

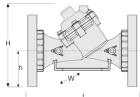
Accessoires circuit de contrôle

Pilote de maintien de pression: PC-3Q-A-MP

Plage de pression du pilote:

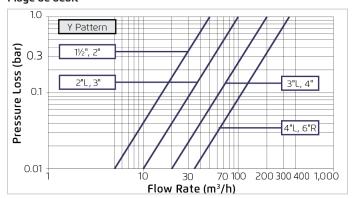

Plage de pression du pilote:						
Ressort	Couleur du ressort	Plage de réglage				
V	Bleu et blanc	1.0-10.0 bar				
Р	blanc	1.0-16.0 bar				


^{*}Ressort standard – marqué en gras


Tubes et raccords: Composite et laiton

Données techniques

Pour d'autres modèles et types de raccordement, se référer à la page d'ingénierie complète de <u>BERMAD</u>.


Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	w	CCDV (Lit)	ΚV
1½"; DN40	Oblique	Taraudée	1.2	200	172	40	97	0.12	50
2"; DN50	Oblique	Taraudée	1.3	230	172	40	97	0.12	50
2"; DN50	Oblique	Rainuré	1.4	284	172	40	97	0.12	50
2"L; DN50L	Oblique	Taraudée	1.6	230	172	43	135	0.15	100
2"L; DN50L	Oblique	Rainuré	1.7	284	172	43	135	0.15	100
3"; DN80	Oblique	Taraudée	1.8	298	181	55	135	0.15	100
3"; DN80	Oblique	Rainuré	1.9	384	188	62	135	0.15	100
3"; DN80	Oblique	Brides en métal	4.6	308	226	100	200	0.15	100
3"L; DN80L	Oblique	Taraudée	3.3	298	243	60	168	0.62	200
3"L; DN80L	Oblique	Rainuré	3.4	384	245	62	168	0.62	200
3"L; DN80L	Oblique	Brides en métal	6.1	310	282	100	200	0.62	200
4"; DN100	Oblique	Rainuré	4.1	384	245	62	168	0.62	200
4"; DN100	Oblique	Brides en métal	7.8	350	294	112	224	0.62	200
4"L; DN100L	Oblique	Rainuré	7.3	400	313	84	226	1.15	340
4"L; DN100L	Oblique	Brides en métal	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblique	Brides en métal	18.2	470	377	149	287	1.15	340

CCDV = Volume de déplacement de la chambre de contrôle • Fileté = BSP & NPT sont disponibles.

Caractéristiques supplémentaires

Code	Description	Tailles disponibles
6	Prise pression plastique	1½"-6"R / DN40-150R

Plage de débit

Circuit à 2 voies « Perte de charge ajoutée » (pour « V » inférieur à 2 m/s):

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd