

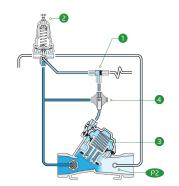
VÁLVULA REDUCTORA DE PRESIÓN CON DERIVACIÓN POR BAJO CAUDAL

Con control hidráulico a distancia para altas presiones

Modelo IR-120-50-HP-3W-XZ

La válvula reductora de presión con control hidráulico a distancia de BERMAD es una válvula de control de operación hidráulica accionada por diafragma, diseñada para altas presiones, que reduce la presión alta aguas arriba a una presión menor y constante aguas abajo, y se abre completamente al caer la presión en la línea. Se abre o se cierra en respuesta a comandos remotos de presión.

- [1] La válvula IR-120-50-HP-3W-XZ de BERMAD se abre al mando de una caída de presión y establece una zona de presión reducida para proteger los laterales y las líneas de distribución.
- [2] Caudalímetro electromagnético Modelo M-10
- [3] Válvula de aire combinada modelo IR-C30
- (4) Deál va chá da aire cinética modelo K10


[5] Controlador de rieso inteligente-OMEGA
[6] Valvida relactora Coresión Modello Renze es a Walxula
piloto reductora de presión (PRP) 2 con la cámara de control de la válvula 📵 . La PRP hace que la válvula se cierre en caso de que la presión aguas abajo [P2] se eleve por encima del valor de ajuste y que se abra completamente cuando cae por debajo de ese valor de ajuste. Al mando de un aumento de presión, la válvula te selectora pasa automáticamente a permitir la presurización de la cámara de control, lo cual conduce al cierre de la válvula principal. El selector manual [4] permite el cierre

Características y ventajas

- Accionada por la presión en la línea, operación hidráulica
 - Protege los sistemas aguas abajo
 - Se abre completamente en caso de caída de la presión
- Válvula de materiales compuestos con diseño de grado industrial
 - Altamente duradera y resistente a las sustancias químicas y los daños por cavitación
 - Adaptable en el sitio a una amplia gama de conexiones
- Cuerpo en forma de 'Y' con pasaje sin interferencias
 - Capacidad de flujo ultra-elevada -Baja pérdida de carga
- Diafragma flexible unificado y tapon guiado
 - Regulación precisa y estable con cierre suave
 - Baja presión de accionamiento
 - Previene la erosión y distorsión del diafragma
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas de riego automatizados
- Estaciones de reducción de presión
- Sistemas sujetos a fluctuaciones en la presión de suministro
- Centros de distribución
- Sistemas de riego que ahorran energía

Tuberías y conectores:

Plástico reforzado y latón

Datos técnicos

Presión nominal:

16 bar

Presiones de trabajo:

Especificaciones técnicas

Consulte la página completa de ingeniería de **BERMAD** acerca de otras formas y tipos de conectores.

0.5-16 bar

Materiales

Cuerpo y tapa: Acero inoxidable

Diafragma:

EPDM

Resorte (muelle):

Acero inoxidable

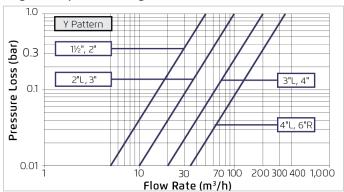
Accesorios del circuito de control

Piloto Reductor: PC-SHARP-

X-MP

Gama de resorte de piloto:

onio de resorte de piloto.					
Resorte (muelle)	Color del resorte	rango de ajuste			
K	Gris	0.5-3.0 bar			
N	Natural	0.8-6.5 bar			
V	Azul y blanco	1.0-10.0 bar			
Р	Blanco	1.0-16.0 bar			


Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	ΚV
1½" ; DN40	Oblicua	Rosca	1.2	200	172	40	97	0.12	50
2" ; DN50	Oblicua	Rosca	1.3	230	172	40	97	0.12	50
2" ; DN50	Oblicua	Ranura (Victaulic)	1.4	284	172	40	97	0.12	50
2"L; DN50L	Oblicua	Rosca	1.6	230	172	43	135	0.15	100
2"L; DN50L	Oblicua	Ranura (Victaulic)	1.7	284	172	43	135	0.15	100
3"; DN80	Oblicua	Rosca	1.8	298	181	55	135	0.15	100
3" ; DN80	Oblicua	Ranura (Victaulic)	1.9	384	188	62	135	0.15	100
3"; DN80	Oblicua	Bridas metálicas	4.6	308	226	100	200	0.15	100
3"L; DN80L	Oblicua	Rosca	3.3	298	243	60	168	0.62	200
3"L; DN80L	Oblicua	Ranura (Victaulic)	3.4	384	245	62	168	0.62	200
3"L; DN80L	Oblicua	Bridas metálicas	6.1	310	282	100	200	0.62	200
4"; DN100	Oblicua	Ranura (Victaulic)	4.1	384	245	62	168	0.62	200
4"; DN100	Oblicua	Bridas metálicas	7.8	350	294	112	224	0.62	200
4"L; DN100L	Oblicua	Ranura (Victaulic)	7.3	400	313	84	226	1.15	340
4"L; DN100L	Oblicua	Bridas metálicas	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblicua	Bridas metálicas	18.2	470	377	149	287	1.15	340

CCDV = Volumen de desplazamiento de la cámara de control • Rosca = BSP & NPT están disponibles.

Características adicionales

Código	Descripción	Rango de tamaños
6	Conector macho de ¼" para manómetro hasta 16 bar	1½"-6"R / DN40-150R

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com