

VÁLVULA REDUTORA DE PRESSÃO

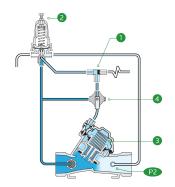
Para Alta Pressão, com Controle Hidráulico Remoto

Modelo IR-120-50-HP-3W-XZ

A Válvula Redutora de Pressão da BERMAD com controle hidráulico remoto é uma válvula de controle operada hidraulicamente, acionada por diafragma e projetada para alta pressão, que reduz a pressão mais alta do fluxo de entrada para uma pressão constante e mais baixa do fluxo de saída e abre totalmente mediante queda na pressão de linha. A válvula abre ou fecha em resposta a um comando de pressão remoto.

[1] O modelo IR-120-50-HP-3W-XZ da BERMAD é aberto mediante comando de queda de pressão e estabelece uma zona de pressão reduzida, protegendo as linhas de distribuição e laterais.

- [2] Medidor de Fluxo Eletromagnético Modelo M-10 (compósito)
- [3] Válvula Ventosa Combinada Modelo IR-C30
- [4] Válvula Ventosa Cinética Modelo IR-K10
- [5] Controlador de Irrigação Inteligente OMEGA
- ල් පැක්තුල්කිල් dutora de Pressão (Piloto Superior)


Modelo IR-12T-55-3W-X A Válvula Corrediça (Shuttle) 1 conecta hidraulicamente o Piloto Redutor de Pressão (PRP) 2 com a Câmara de Controle da Válvula 3. O Piloto Redutor de Pressão 1. comanda a válvula para que seja fechada por estrangulamento, caso a Pressão do Fluxo de Saída [P2] aumente acima da configuração e abra totalmente quando a pressão cair abaixo da configuração. Mediante o comando de aumento de pressão, a válvula corrediça (Shuttle) é comutada automaticamente, permitindo a pressurização da câmara de controle, fazendo com que a válvula principal seja fechada. O Seletor Manual [4] permite o fechamento

Benefícios e Características

- Controlada Hidraulicamente, Acionada por Pressão de Linha
 - Protege sistemas do fluxo de saída
 - Abre totalmente mediante queda na pressão de linha
- Válvula em Compósito de Engenharia com Design de Classificação Industrial
 - Altamente durável, resistente a produtos químicos e cavitação
 - Adaptável no local a uma ampla variedade de conexões de encaixe
- Corpo da válvula hYflow 'Y' com design "Transparente"
 - Capacidade de fluxo ultra-alta com baixa perda de pressão
- Diafragma Flexível Unificado e Obturador com Guia
 - Regulagem precisa e estável com fechamento suave
 - Requer baixa pressão de atuação
 - Evita a erosão e distorção do diafragma
 - Inspeção e Serviço Simples em Linha

Aplicações Típicas

- Sistemas de Irrigação Automatizados
- Estações de Redução de Pressão
- Sistemas Sujeitos a Diferentes Pressões de Alimentação
- Centros de Distribuição
- Sistemas de Irrigação com Economia de Energia

IR-120-50-HP-3W-X7

Série 100 Redução de pressão

Dados Técnicos

Classe de Pressão:

16 bar

Faixa de Pressão Operacional: 0.5-16 bar

Materiais

Corpo e Tampa:

Poliamida reforçada

Diafragma: EPDM

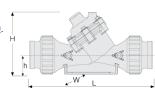
Mola:

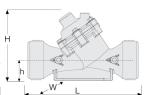
Aço inox

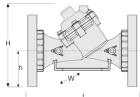
Acessórios do Circuito de Controle

Piloto PR: PC-SHARP-X-MP

Faixa da Mola do Piloto:

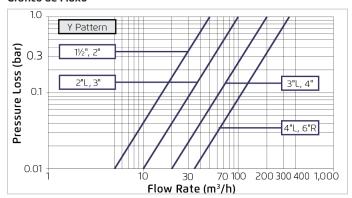

Mola	Cor da Mola	Faixa de ajuste		
K		0.5-3.0 bar		
N		0.8-6.5 bar		
V		1.0-10.0 bar		
Р		1.0-16.0 bar		


Mola padrão - marcada em negrito


Tubulação e Conexões: Plástico Reforçado e Latão

Especificações Técnicas

Para outros tipos de padrões e conexões de encaixe, consulte a página de engenharia completa da <u>BERMAD</u>.


Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Oblíquo	Rosqueado	1.2	200	172	40	97	0.12	50
2"; DN50	Oblíquo	Rosqueado	1.3	230	172	40	97	0.12	50
2"; DN50	Oblíquo	Ranhurado	1.4	284	172	40	97	0.12	50
2"L; DN50L	Oblíquo	Rosqueado	1.6	230	172	43	135	0.15	100
2"L; DN50L	Oblíquo	Ranhurado	1.7	284	172	43	135	0.15	100
3"; DN80	Oblíquo	Rosqueado	1.8	298	181	55	135	0.15	100
3"; DN80	Oblíquo	Ranhurado	1.9	384	188	62	135	0.15	100
3"; DN80	Oblíquo	Flanges de metal	4.6	308	226	100	200	0.15	100
3"L; DN80L	Oblíquo	Rosqueado	3.3	298	243	60	168	0.62	200
3"L; DN80L	Oblíquo	Ranhurado	3.4	384	245	62	168	0.62	200
3"L; DN80L	Oblíquo	Flanges de metal	6.1	310	282	100	200	0.62	200
4"; DN100	Oblíquo	Ranhurado	4.1	384	245	62	168	0.62	200
4"; DN100	Oblíquo	Flanges de metal	7.8	350	294	112	224	0.62	200
4"L; DN100L	Oblíquo	Ranhurado	7.3	400	313	84	226	1.15	340
4"L; DN100L	Oblíquo	Flanges de metal	11.2	442	340	112	226	1.15	340
6"R; DN150R	Oblíquo	Flanges de metal	18.2	470	377	149	287	1.15	340

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis.

Características Adicionais

Código	Descrição	Faixa de Tamanho
6	Manômetro até 16 bar, conector macho de ¼"	1½"-6"R / DN40-150R

Gráfico de Fluxo

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h \otimes \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = bar$$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros