

VALVOLA DI RIDUZIONE **DELLA PRESSIONE**

Con telecomando idraulico-Alta pressione

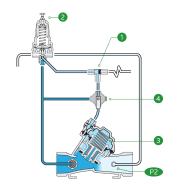
Modello IR-120-50-HP-3W-XZ

La valvola riduttrice di pressione BERMAD con comando idraulico da remoto è una valvola di controllo a diaframma, azionata idraulicamente, progettata per l'alta pressione, che riduce la pressione a monte più elevata per abbassare la pressione a valle costante e si apre completamente in caso di caduta di pressione della linea. Si apre o si chiude in risposta a un comando di pressione da remoto.

[1] Il Modello BERMAD IR-120-50-HP-3W-XZ si apre in risposta a una caduta di pressione e stabilisce una zona a pressione ridotta proteggendo i laterali e la linea di distribuzione.

- [2] Contatore di portata elettromagnetico Modello M-10
- [3] Valvola dell'Aria Combinata Modello IR-C30
- [4] Valvola cinetica dell'aria modello K10
- [5] Programmatore di irrigazione intelligente OMEGA
- [6] Valvola riduttrice di pressione (pilota superiore)
- Ope 6 de 21 lio R-112T-55-3W-X

La valvola shuttle 🚺 collega idraulicamente il Pilota di Riduzione della Pressione (PRP) [2] alla Camera di Controllo della Valvola [3] . Il PRP comanda alla valvola di chiudersi nel caso in cui la pressione a valle [P2] dovesse aumentare superando l'impostazione e di aprirsi completamente quando scende sotto shuttle commuta automaticamente, consentendo la pressurizzazione della camera di controllo, che provoca la chiusura della valvola principale. Il Selettore Manuale [4] abilita la chiusura manuale


l'impostazione. Al comando di aumento della pressione, la valvola

Caratteristiche e vantaggi

- Azionamento con Pressione di Linea controllato idraulicamente
 - Protegge i sistemi a valle
 - Si apre completamente in risposta a una caduta di pressione di linea
- Valvola in Plastica Ingegnerizzata con Design di Livello Industriale
 - Altamente durevole, resistente agli agenti chimici e alla cavitazione
 - Adattabile in loco ad un'ampia gamma di connessioni terminali
- Corpo Valvola hYflow Y con design "Look Through"
 - Portata ultra elevata a bassa perdita di pressione
- Diaframma Flessibile Unico con Attuatore Guidato
 - Regolazione precisa e stabile con chiusura facile
 - Richiede una bassa pressione di esercizio
 - Previene l'erosione e la distorsione del diaframma
 - Ispezione e assistenza in linea semplici

Applicazioni tipiche

- Sistemi di irrigazione automatizzati
- Stazioni di Riduzione Pressione
- Sistemi Soggetti a Variazioni della Pressione di Alimentazione
- Centri di Distribuzione
- Sistemi di Irrigazione a Risparmio Energetico

Riduttore di Pressione

Dati Tecnici

Pressione d'esercizio: 16 bar

Intervallo di Pressione Operativa:

0.5-16 bar

Materiali

Corpo e Coperchio:

Acciaio Inox

Diaframma:

EPDM

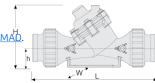
Molla: Acciaio Inox

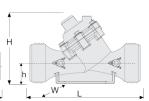
Accessori del Circuito

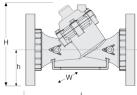
Pilota PRV: PC-SHARP-X-MP Range molla del pilota:

Molla	Colore Molla	Range di Regolazione
K	Grigio	0.5-3.0 bar
N	Naturale	0.8-6.5 bar
V	Blu & Bianco	1.0-10.0 bar
Р	Bianco	1.0-16.0 bar

Molla standard - indicata in grassetto _x000D_

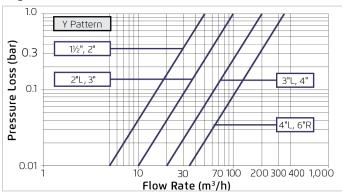

Tubi e raccordi:


Plastica rinforzata e ottone


Specifiche Tecniche

Per altri modelli e tipi di connessioni terminali,

Consultare la pagina di progettazione completa di BERMAD


Dimensione	Modello	Connessione	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Obliquo	Filettato	1.2	200	172	40	97	0.12	50
2" ; DN50	Obliquo	Filettato	1.3	230	172	40	97	0.12	50
2" ; DN50	Obliquo	Scanalata-Victaulic	1.4	284	172	40	97	0.12	50
2"L; DN50L	Obliquo	Filettato	1.6	230	172	43	135	0.15	100
2"L; DN50L	Obliquo	Scanalata-Victaulic	1.7	284	172	43	135	0.15	100
3"; DN80	Obliquo	Filettato	1.8	298	181	55	135	0.15	100
3"; DN80	Obliquo	Scanalata-Victaulic	1.9	384	188	62	135	0.15	100
3"; DN80	Obliquo	Flange metalliche	4.6	308	226	100	200	0.15	100
3"L; DN80L	Obliquo	Filettato	3.3	298	243	60	168	0.62	200
3"L; DN80L	Obliquo	Scanalata-Victaulic	3.4	384	245	62	168	0.62	200
3"L; DN80L	Obliquo	Flange metalliche	6.1	310	282	100	200	0.62	200
4" ; DN100	Obliquo	Scanalata-Victaulic	4.1	384	245	62	168	0.62	200
4"; DN100	Obliquo	Flange metalliche	7.8	350	294	112	224	0.62	200
4"L; DN100L	Obliquo	Scanalata-Victaulic	7.3	400	313	84	226	1.15	340
4"L; DN100L	Obliquo	Flange metalliche	11.2	442	340	112	226	1.15	340
6"R; DN150R	Obliquo	Flange metalliche	18.2	470	377	149	287	1.15	340

CCDV = Volume di Spostamento della Camera di Controllo • Filettato = disponibili BSP e NPT.

Caratteristiche Aggiuntive

Codice	Descrizione	Gamma di Dimensioni
6	Manometro fino a 16 bar connettore maschio ¼"	1½"-6"R / DN40-150R

diagramma di flusso

Differenziale di Pressione e Calcolo della Portata

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = \text{bar}$

www.bermad.com