

VANNE DE MAINTIEN DE PRESSION -CHAMBRE DOUBLE

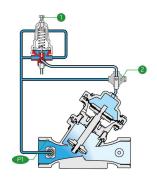
Modèle IR-130-DC-3W-XZ

La vanne de maintien de pression Modèle IR-130-DC-3W-XZ de BERMAD est une vanne de régulation à chambre double, à commande hydraulique, actionnée par une membrane qui maintient une pression amont (contre-pression) minimale prédéfinie et s'ouvre complètement lorsque la pression de conduite dépasse le réglage. La vanne à chambre double est une vanne haute performance, spécialement conçue pour une réponse rapide et des exigences de régulation strictes.

[1] Le Modèle IR-130-DC-3W-XZ de BERMAD maintient la pression du système d'alimentation vers les parcelles en montée et empêche la vidange du système.

- [2] Vannes de commande solénoïdes Modèle IR-21T
- [3] Vanne d'air combinée modèle IR-C10
- [4] Vanne d'air combinée modèle IR-C10
- [5] Unité Terminale Distante RTU

Caractéristiques et avantages


- Entraînement par pression de ligne, commande hydraulique
 - Donne la priorité aux zones de pression
 - Remplissage du système de commandes
 - S'ouvre complètement lorsque la pression de la conduite augmente
- Conception à double chambre
 - Ouverture et fermeture entièrement motorisées
 - Diminution des pertes de pression
 - Faible bruit d'étranglement
 - Caractéristique de fermeture sans claquement
 - Diaphragme protégé
- Valve composite d'ingénierie avec conception de qualité industrielle
- Corps de valve HyFlow en « Y » avec design « Look Through »
 - Capacité de débit très élevée avec faible perte de pression
- Conception facile d'utilisation
 - Inspection et entretien simples en ligne

Applications types

- Solutions de contrôle du remplissage des lignes
- Prévention du vidage des lignes
- Systèmes soumis à une pression d'alimentation variable
- Maintien de la pression de lavage à contre-courant des filtres Infield
- Systèmes d'irrigation économes en énergie

Fonctionnement:

Le pilote de maintien de pression 🗻 commande à la soupape principale de fermer l'accélérateur si la pression amont [P1] tombe en dessous du réglage, et de s'ouvrir complètement lorsque [P1] dépasse le réglage. Le sélecteur manuel [2] permet la fermeture manuelle locale

Données techniques

Pression nominale:

10 bar

Plage de pression de fonctionnement:

Données techniques

Pour d'autres modèles et types de raccordement, se référer à la page d'ingénierie complète de **BERMAD**.

0.5-10 bar

Matériaux

Irrigation

Corps et couvercle:

Polyamide 6 & 30% GF

Membrane:

NR, tissu en nylon renforcé

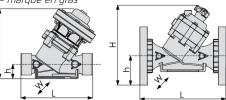
Ressort:

Acier inoxydable

Accessoires circuit de contrôle

Pilote de maintien de pression: PC-SHARP-X-P

Plage de pression du pilote:

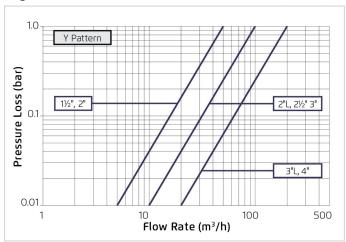

	•	•		
Ressort	Couleur du ressort	Plage de réglage		
J	Vert	0.2-1.7 bar		
K	Gris	0.5-3.0 bar		
N	Naturel	0.8-6.5 bar		
V	Bleu et blanc	1.0-10.0 bar		

*Ressort standard – marqué en gras

Tubes et raccords:

Polyéthylène et polypropylène

*Pour d'autres pilotes, veuillez consulter **BERMAD**


Taille	Forme	Raccordement entrée/sortie	Poids (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	ΚV
1½" ; DN40	Modèle en Y	Taraudée	1.7	200	194	40	126	0.13	50
2" ; DN50	Modèle en Y	Taraudée	1.7	230	196	40	126	0.13	50
2"L; DN50L	Modèle en Y	Taraudée	2.2	230	220	43	135	0.17	100
2½"; DN50L	Modèle en Y	Taraudée	2.2	230	220	43	135	0.17	100
3"; DN80	Modèle en Y	Taraudée	2.3	298	232	55	135	0.17	100
3" ; DN80	Modèle en Y	Brides en plastique	3.2	308	277	100	200	0.17	100
3" ; DN80	Modèle en Y	Brides en métal	5.1	308	277	100	200	0.17	100
3"L; DN80L	Modèle en Y	Taraudée	6	338	356	60	210	0.55	200
3"L; DN80L	Modèle en Y	Brides en plastique	6.5	343	395	100	210	0.55	200
3"L; DN80L	Modèle en Y	Brides en métal	7.4	343	395	100	210	0.55	200
4" ; DN100	Modèle en Y	Brides en plastique	7.6	364	407	112	224	0.55	200
4"; DN100	Modèle en Y	Brides en métal	9.5	364	407	112	224	0.55	200

CCDV = Volume de déplacement de la chambre de contrôle • Fileté = BSP & NPT sont disponibles. Filetage externe disponible uniquement pour 2" et 2½". • D'autres raccordements d'extrémité sont disponibles sur demande. Pour les dimensions et poids des adaptateurs ou des vannes avec

adaptateurs, veuillez consulter le service client. Caractéristiques supplémentaires

Code	Description	Tailles disponibles
K/L	Ressort auxiliaire de fermeture/levage (pour les modèles 100-DC uniquement)	1½"-4" / DN40-100
5	Prise pression plastique	1½"-4" / DN40-100

Plage de débit

Calcul de la pression différentielle et du débit

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

Les informations contenues dans ce document peuvent etre modifiees par BERMAD sans preavis. BERMAD ne peut etre tenu responsable des erreurs eventuelles.

© Copyright 2015-2025 BERMAD CS Ltd