

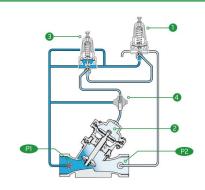
VÁLVULA REDUTORA E SUSTENTADORA DE PRESSÃO - CÂMARA DUPLA

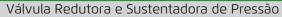
Modelo IR-123-DC-3W-XZ

A Válvula de Controle Sustentadora e Redutora de Pressão modelo IR-123-DC-3W-XZ da BERMAD é uma válvula de controle de câmara dupla, operada hidraulicamente e acionada por diafragma, que sustenta a pressão mínima predefinida do fluxo de entrada (retorno) e reduz a pressão do fluxo de saída para uma pressão máxima constante predefinida. A Válvula de Câmara Dupla é uma válvula de alto desempenho, especialmente projetada para uma resposta rápida e requisitos de regulagem desafiadores.

- [1] O modelo IR-123-DC-3W-XZ da BERMAD é aberto mediante comando de queda de pressão, sustenta a pressão de retrolavagem dos filtros e estabelece uma zona de pressão reduzida.
- [2] Medidor de Fluxo Eletromagnético
- [3] Válvula Ventosa Combinada Modelo IR-C10
- [4] Válvula Hidráulica de Retrolavagem de Filtro Modelo IR-350
- [5] Válvula de Controle Hidráulico Modelo IR-105-Z
- [6] Válvula Ventosa Cinética Modelo IR-KIU Operação:

O Piloto Redutor de Pressão (PRP) 11 é conectado hidraulicamente com a Câmara de Controle da Válvula 🛛 através do Piloto Sustentador de Pressão (PSP) 31. O Piloto Sustentador de Pressão (PSP) comanda a válvula para que seja fechada por estrangulamento, caso a Pressão do Fluxo de Entrada [P1] caia abaixo da configuração. Quando a pressão [P1] aumenta acima da configuração, o Piloto Sustentador de Pressão (PSP) comuta e permite que o Piloto Redutor de Pressão (PSP) controle a válvula, comandando-a para reduzir a Pressão do Fluxo de Saída [P2]. O Seletor Manual [4] permite o fechamento manual local.


Todas as imagens neste catálogo são meramente ilustrativas


Benefícios e Características

- Controlada Hidraulicamente, Acionada por Pressão de Linha
 - Protege sistemas do fluxo de saída
 - Prioriza as zonas de pressão
 - Controla o abastecimento do sistema
- Design de Câmara Dupla
 - Abertura e fechamento totalmente alimentado
 - Perda de pressão diminuída
 - Baixo ruído de estrangulamento
 - Característica de fechamento antigolpe (sem impacto)
 - Diafragma protegido
- Válvula em Compósito de Engenharia com Design de Classificação Industrial
- Corpo da válvula hYflow 'Y' com design "Transparente"
 - Capacidade de fluxo ultra-alta com baixa perda de pressão
- Design Fácil de Usar
 - Inspeção e Serviço Simples em Linha

Aplicações Típicas

- Soluções de Controle de Abastecimento da Linha
- Prevenção do Esvaziamento da Linha
- Sistemas de Redução de Pressão
- Sustentação de Pressão de Retrolavagem de Filtro em Campo
- Sistemas de Irrigação com Economia de Energia

Dados Técnicos

Classe de Pressão: 10 bar

Faixa de Pressão Operacional:

0.5-10 bar

Materiais

Corpo e Tampa: Poliamida 6 e 30% GF

Diafragma:

NR, tecido de nylon reforçado

Mola:

Aço inox

Acessórios do Circuito de Controle

Piloto PR: PC-SHARP-X-P Piloto PS: PC-SHARP-X-P

Faixa da Mola do Piloto:

Mola	Cor da Mola	Mola Faixa de ajuste					
J		0.2-1.7 bar					
K		0.5-3.0 bar					
N		0.8-6.5 bar					
V		1.0-10.0 bar					
		0.5-3.0 bar 0.8-6.5 bar					

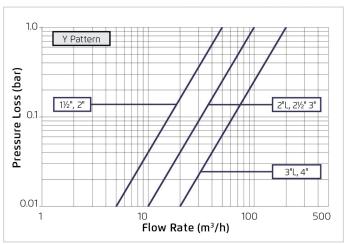
Tubulação e Conexões:

Polietileno

*Para outros pilotos, consulte a **BERMAD**

Especificações Técnicas

Para outros tipos de padrões e conexões de encaixe, consulte a página de engenharia completa da **BERMAD**.


Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Padrão Y	Rosqueado	1.7	200	194	40	126	0.13	50
2" ; DN50	Padrão Y	Rosqueado	1.7	230	196	40	126	0.13	50
2"L; DN50L	Padrão Y	Rosqueado	2.2	230	220	43	135	0.17	100
2½"; DN50L	Padrão Y	Rosqueado	2.2	230	220	43	135	0.17	100
3"; DN80	Padrão Y	Rosqueado	2.3	298	232	55	135	0.17	100
3"; DN80	Padrão Y	Flanges de plástico	3.2	308	277	100	200	0.17	100
3"; DN80	Padrão Y	Flanges de metal	5.1	308	277	100	200	0.17	100
3"L; DN80L	Padrão Y	Rosqueado	6	338	356	60	210	0.55	200
3"L; DN80L	Padrão Y	Flanges de plástico	6.5	343	395	100	210	0.55	200
3"L; DN80L	Padrão Y	Flanges de metal	7.4	343	395	100	210	0.55	200
4" ; DN100	Padrão Y	Flanges de plástico	7.6	364	407	112	224	0.55	200
4"; DN100	Padrão Y	Flanges de metal	9.5	364	407	112	224	0.55	200

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis. A rosca externa está disponível somente para 2" e 2½". • Outras Conexões de Encaixe estão disponíveis mediante solicitação. Para dimensões e pesos de adaptadores ou válvulas com

adaptadores, consulte o serviço de atendimento ao cliente. **Características Adicionais**

Código	Descrição	Faixa de Tamanho		
K/L	Mola auxiliar de Fechar/Elevar (apenas para modelos	1½"-4" / DN40-100		
	100-DC			

Gráfico de Fluxo

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{Kv}\right)^2$$
 $Kv = m^3/h @ \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = \text{bar}$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros