

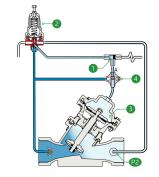
VÁLVULA REDUCTORA DE PRESIÓN -CÁMARA DOBLE

Modelo IR-120-DC-50-3W-XZ

La válvula reductora de presión modelo IR-120-DC-50-3W-XZ de BERMAD con control remoto hidráulico es una válvula de control de doble cámara, operada hidráulicamente y accionada por diafragma, que reduce la presión más alta aguas arriba para disminuir la presión constante aguas abajo y se abre completamente en caso de caída de presión en la línea. La válvula de cámara doble es una válvula de alto rendimiento, especialmente diseñada para una respuesta rápida y requisitos de regulación desafiantes.

- [1] El modelo IR-120-DC-50-3W-XZ de BERMAD se abre ante una orden de caída de presión y establece una zona de presión reducida que protege los laterales y la línea de distribución.
- [2] Válvulas de control de solenoide modelo IR-210
- [3] Válvula de aire combinada modelo IR-C10
- [4] Válvula de aire cinética modelo IR-K10
- [5] RTU- unidad terminal remota

Características y ventajas


- Accionada por la presión en la línea, operación hidráulica
 - Protege los sistemas aguas abajo
 - Se abre completamente en caso de caída de la presión
- Diseño de doble cámara
 - Apertura y cierre a plena potencia
 - Pérdida de presión reducida
 - Característica de cierre sin golpe
 - Diafragma protegido
- Válvula de materiales compuestos con diseño de grado industrial
- Cuerpo en forma de 'Y' con pasaje sin interferencias (Look Through)
 - Capacidad de flujo ultra-elevada -Baja pérdida de carga
- Diseño de facil manejo
 - Inspección y mantenimiento sencillos en línea

Aplicaciones típicas

- Sistemas reductores de presión
- Sistemas sujetos a fluctuaciones en la presión de suministro
- Sistemas de riego que ahorran energía

Operación:

La válvula de lanzadera [] conecta hidráulicamente el piloto reductor de presión (PRP) [2] a la cámara de control de la válvula [3]. El PRP ordena a la válvula que se cierre si la presión aguas abajo [P2] supera el valor establecido y que se abra completamente cuando caiga por debajo de dicho valor. Al recibir la orden de aumento de presión, la válvula de lanzadera conmuta automáticamente, permitiendo la presurización de la cámara de control, lo que provoca el cierre de la válvula principal. El selector manual [4] permite el cierre manual.

Polietileno

BERMAD

IR-120-DC-50-3W-X7

Datos técnicos

Presión nominal:

10 bar

Presiones de trabajo:

Especificaciones técnicas

Consulte la página completa de ingeniería de <u>BERMAD</u> acerca de otras formas y tipos de conectores.

0.5-10 bar

Materiales

Cuerpo y tapa:

Poliamida 6 y 30% GF

Diafragma:

NR, Nylon reforzado

Resorte (muelle):

Acero inoxidable

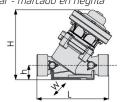
Accesorios del circuito de control

Piloto Reductor: PC-SHARP-

X-P

Gama de resorte de piloto:

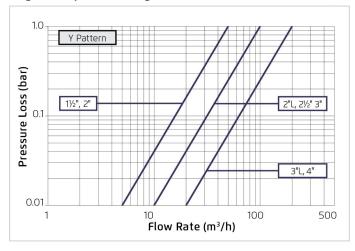
dome de resorte de photos						
Resorte (muelle)	Color del resorte	rango de ajuste				
J	Verde	0.2-1.7 bar				
K	Gris	0.5-3.0 bar				
N	Natural	0.8-6.5 bar				
V	Azul y blanco	1.0-10.0 bar				


Resorte estándar - marcado en negrita

Tuberías y conectores:

recomienda consultar con

*Para otros pilotos se


Tamaño	Forma	Conexión	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	ΚV
1½"; DN40	"Y" (glovo)	Rosca	1.7	200	194	40	126	0.13	50
2"; DN50	"Y" (glovo)	Rosca	1.7	230	196	40	126	0.13	50
2"L; DN50L	"Y" (glovo)	Rosca	2.2	230	220	43	135	0.17	100
2½"; DN50L	"Y" (glovo)	Rosca	2.2	230	220	43	135	0.17	100
3" ; DN80	"Y" (glovo)	Rosca	2.3	298	232	55	135	0.17	100
3" ; DN80	"Y" (glovo)	Bridas plásticas	3.2	308	277	100	200	0.17	100
3" ; DN80	"Y" (glovo)	Bridas metálicas	5.1	308	277	100	200	0.17	100
3"L; DN80L	"Y" (glovo)	Rosca	6	338	356	60	210	0.55	200
3"L; DN80L	"Y" (glovo)	Bridas plásticas	6.5	343	395	100	210	0.55	200
3"L; DN80L	"Y" (glovo)	Bridas metálicas	7.4	343	395	100	210	0.55	200
4" ; DN100	"Y" (glovo)	Bridas plásticas	7.6	364	407	112	224	0.55	200
4"; DN100	"Y" (glovo)	Bridas metálicas	9.5	364	407	112	224	0.55	200

VDCC = Volumen de descarga (desplazamiento) en la cámara de control • **Rosca** = BSP y estándar americano NPT disponibles. La rosca externa está disponible solo para 2" y 2½". • Otras conexiones terminales disponibles a pedido. En materia de dimensiones y pesos de adaptadores o de válvulas

con adaptadores consulte con el servicio al cliente. **Características adicionales**

Código	Descripción	Rango de tamaños
K/L	Resorte (muelle) de cierre auxiliar /exterior (solo para modelos 100-DC)	1½"-4" / DN40-100
5	Toma de presión de plástico	1½"-4" / DN40-100
7	Toma de presión de plástico	1½"-4" / DN40-100

Diagrama de pérdida de carga

Cálculo de presión diferencial y caudal

$$\Delta P = \left(\frac{Q}{Kv}\right)^{2}$$

$$Kv = m^{3}/h @ \Delta P \text{ of 1 bar}$$

$$Q = m^{3}/h$$

$$\Delta P = \text{bar}$$

www.bermad.com