

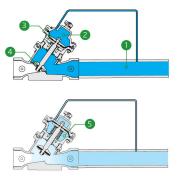
VÁLVULA FLUSH-'N-STOP (LIMPEZA E BLOQUEIO) - CÂMARA DUPLA

Modelo IR-100-DC-I MOe

O modelo IR-100-LMoE da BERMAD é uma válvula de controle de dupla câmara, operada hidraulicamente e acionada por diafragma, adequada para lavagem automática de linhas de distribuição no início e no final de cada ciclo de irrigação. Equipada com uma mola de abertura auxiliar, permite a abertura automática quando o sistema atinge a pressão de fechamento e a taxa de abertura ajustável, garantindo o aumento da pressão de linha para um fechamento seguro.

- [1] O modelo IR-100-LMoE da BERMAD abre quando o sistema atinge a pressão de fechamento, limpando a sujeira e sedimentos, e é fechada quando a pressão de linha é aumenta para iniciar a irrigação
- [2] Entrada da Pressão de Controle

Benefícios e Características


- Válvula de Controle Hidráulico
 - Acionada por pressão de linha
 - Tempo de resposta curto
 - Vedação sem gotejamento de longo prazo
- Válvula em Compósito de Engenharia com Design de Classificação Industrial
 - Adaptável no local a uma ampla variedade de conexões de encaixe
 - Altamente durável, resistente a produtos químicos e cavitação
- Corpo da válvula hYflow 'Y' com design "Transparente"
 - Capacidade de fluxo ultra-alta com baixa perda de pressão
- Design de Câmara Dupla
 - Abertura e fechamento totalmente alimentado
 - Perda de pressão diminuída
 - Baixo ruído de estrangulamento
 - Característica de fechamento antigolpe (sem impacto)
 - Diafragma protegido
- Design Fácil de Usar
 - Inspeção e Serviço Simples em Linha

Aplicações Típicas

- Flush-'n-Stop (Limpeza e Bloqueio) de Linhas de Distribuição
- Sistemas de Gotejamento
- Aspersores e Microaspersores
- Flush-'n-Stop (Limpeza e Bloqueio) de Linhas de Máquinas de Irrigação

Operação:

A Pressão de Linha de Irrigação 间 pressuriza a Câmara de Controle Superior [2], forcando o Obturador [4] acionado pelo Diafragma 🖪 a se mover em direção para a posição fechada e, deste modo, fechando a Válvula. Quando a irrigação é interrompida, a pressão do sistema cai, permitindo que a força de abertura da Mola [5] supere a força de fechamento hidráulica. Em seguida, a força da mola empurra o diafragma para abrir a válvula, que permanece aberta. Quando a irrigação começa novamente, um fluxo de água limpa a linha através da válvula aberta. A resistência da válvula permite que a pressão se acumule e aumente até que a pressão na câmara de controle crie uma forca de fechamento hidráulica maior do que a forca de abertura da mola, fazendo com que a válvula seia fechada. Todas as imagens neste catálogo são meramente ilustrativas

IR-100-DC-I MOA

Retrolavagem de Filtro

Dados Técnicos

Classe de Pressão: 10 bar

Faixa de Pressão Operacional:

0.5-10 bar

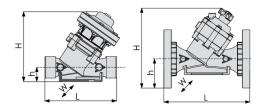
Materiais

Corpo e Tampa: Poliamida 6 e 30% GF

Diafragma:

NR, tecido de nylon reforçado

Mola:


Aço inox

Acessórios do Circuito de Controle

Tubulação e Conexões: Polietileno

Especificações Técnicas

Para outros tipos de padrões e conexões de encaixe, consulte a página de engenharia completa da <u>BERMAD</u>.

Tamanho	Padrão	Conexão de Encaixe	Peso (Kg)	L (mm)	H (mm)	h (mm)	W	CCDV (Lit)	KV
1½" ; DN40	Padrão Y	Rosqueado	1.7	200	194	40	126	0.13	50
2"; DN50	Padrão Y	Rosqueado	1.7	230	196	40	126	0.13	50
2"L; DN50L	Padrão Y	Rosqueado	2.2	230	220	43	135	0.17	100
21/2"; DN50L	Padrão Y	Rosqueado	2.2	230	220	43	135	0.17	100
3"; DN80	Padrão Y	Rosqueado	2.3	298	232	55	135	0.17	100
3"; DN80	Padrão Y	Flanges de metal	5.1	308	277	100	200	0.17	100
3"; DN80	Padrão Y	Flanges de plástico	3.2	308	277	100	200	0.17	100
3"L; DN80L	Padrão Y	Rosqueado	6	338	356	60	210	0.55	200
3"L; DN80L	Padrão Y	Flanges de plástico	6.5	343	395	100	210	0.55	200
3"L; DN80L	Padrão Y	Flanges de metal	7.4	343	395	100	210	0.55	200
4"; DN100	Padrão Y	Flanges de plástico	7.6	364	407	112	224	0.55	200
4"; DN100	Padrão Y	Flanges de metal	9.5	364	407	112	224	0.55	200

CCDV = Volume de Deslocamento da Câmara de Controle • Rosqueada = BSP e NPT estão disponíveis. A rosca externa está disponível somente para 2" e 2½". • Outras Conexões de Encaixe estão disponíveis mediante solicitação. Para dimensões e pesos de adaptadores ou válvulas com adaptadores, consulte o serviço de atendimento ao cliente.

Gráfico de Fluxo

Cálculo de Fluxo e Diferencial de Pressão

$$\Delta P = \left(\frac{Q}{KV}\right)^2$$
 $Kv = m^3/h \otimes \Delta P \text{ of 1 bar}$
 $Q = m^3/h$
 $\Delta P = bar$

www.bermad.com

As informações aqui contidas podem ser alteradas pela BERMAD sem aviso prévio. A BERMAD não se responsabiliza por quaisquer erros

© Copyright 2015-2025 BERMAD CS Ltd.