

VÁLVULA DE CONTROL DE PRESIÓN DIFERENCIAL, EN LÍNEA

Modelo FP-42T-06

El modelo de BERMAD 42T-06 es una válvula elastomérica reductora de presión diferencial accionada por presión de línea hidráulica, diseñada específicamente para sistemas avanzados de protección contra incendios y los estándares más recientes de la industria.

La 42T-06 está equipada con una válvula piloto diferencial ajustable y se utiliza para mantener un diferencial de presión establecido entre dos puntos diferentes.

Cuando el diferencial entre las dos presiones detectadas se acerca al máximo preestablecido, la válvula piloto comienza a cerrar la válvula principal, regulando la presión y evitando que el diferencial siga aumentando.

La 42T-06 es ideal para sistemas de dosificación de espuma de presión balanceada, y también como protección contra sobrecarga de caudal en bombas dosificadoras.

Como opción, la 42T-06 puede equiparse con un indicador de posición de válvula que puede incluir un interruptor de límite adecuado para sistemas de monitoreo de gas y fuego.

- Seguridad y confiabilidad
 - Diseño simple, probado en el tiempo, con activación a prueba de fallos
 - Sello de diafragma elastomérico de una sola pieza, robusto - tecnología VRSD
 - Ruta de flujo sin obstáculos y sin interrupciones
 - Sin partes mecánicas móviles
- Rendimiento alto
 - Eficiencia de flujo muy alto
 - Cuerpo tipo Y de paso recto
 - Aprobado para PN25/365 psi
- Mantenimiento rápido v fácil
 - Servicio en línea
 - Retiro rápido y fácil de la tapa

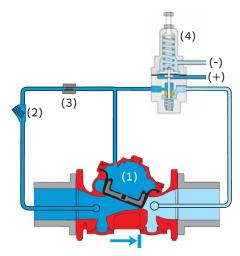
Aprobaciones

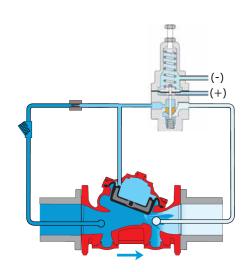
ABS American Bureau of Shipping

Aprobación

Det Norske Veritas Aprobación

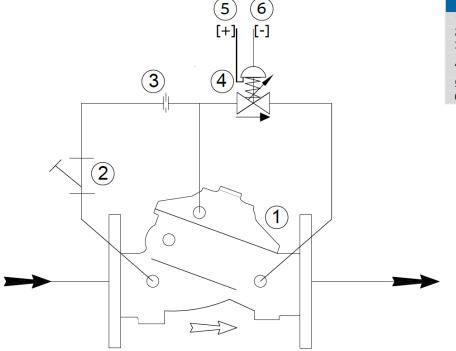
Lloyd's Register Aprobación


Aplicaciones típicas

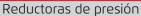

- Protección contra sobrecarga de bomba y cavitación
- sistemas de dosificación de presión balanceada
- Protección de caudal de la bomba
- Sistemas de inyección de concentrado de espuma

Características adicionales

- Revestimiento epoxi de alto espesor a base de zinc resistente a la corrosión
- Valve Position Indicator
- Large control filter



El modelo 42T-06 de BERMAD se mantiene cerrado por la presión de entrada en la cámara de control [1], suministrada a través del filtro de la línea piloto [2] y el orificio de restricción [3]. Para abrir la válvula, la presión en la cámara de control debe liberarse hacia la salida mediante la apertura del piloto [4].


El piloto detecta dos presiones, una presión mayor (+) y una presión menor (-). Si la diferencia entre estas dos presiones se acerca al máximo establecido (determinado por el tornillo de ajuste del piloto), el piloto tenderá a cerrarse, permitiendo así que la presión se acumule en la cámara de control de la válvula, haciendo que la válvula principal estrangule. Esto regula la presión en la tubería aguas abajo, manteniendo la presión diferencial por debajo del máximo establecido.

Si la presión diferencial disminuye, el piloto se abrirá, liberando la presión en la cámara de control de la válvula, lo que provoca que la válvula principal se abra y mantenga la presión diferencial.

Esquema del sistema

	Componentes
1	Válvula principal BERMAD 400Y
2	Priming strainer
3	Restriction Orifice
4	Válvula piloto reductora de presión diferencial
5	Detección de alta presión
6	Detección de baja presión


Instalación del sistema

Una instalación típica del modelo BERMAD 400Y 42T-06 cuenta con la activación de la válvula mediante un piloto de control para regular la 42T-06 en respuesta a un aumento de presión diferencial entre dos puntos. La 42T-06 es ideal para la regulación en sistemas de dosificación de presión balanceada o aplicaciones de dosificación de espuma.

La válvula utiliza un mecanismo de activación sencillo y comprobado, sin partes móviles mecánicas, lo que minimiza el riesgo de fallos. Su diafragma elastomérico de una sola pieza (tecnología VRSD) contribuye a su durabilidad y confiabilidad en entornos exigentes.

Sistema de dosificación de presión balanceada

Una instalación típica es en un sistema de dosificación de presión balanceada, donde la BERMAD 42T-06 se instala en la tubería de suministro de concentrado de espuma y se utiliza para mantener el diferencial de presión correcto entre la presión del sistema de agua contra incendios y la presión de su

Al detectar la presión diferencial a través de la bomba dosificadora, la 42T-06 tiende a estrangularse cuando se ha alcanzado el caudal máximo permitido para la bomba dosificadora, regulando y evitando que el caudal supere el máximo recomendado para la bomba dosificadora, previniendo así una sobreca

Especificaciones sugeridas

La válvula deberá estar listada UL y aprobada FM, con presión nominal de 365 psi/25 bar, y cuerpo tipo Y de paso recto. La válvula deberá tener un paso de flujo sin obstrucciones, sin quía de vástago ni costillas de soporte.

La válvula principal no deberá tener partes móviles mecánicas, y la activación deberá utilizar un conjunto de diafragma de una sola pieza con tecnología VRSD.

La válvula deberá estar recubierta interna y externamente con protección UV. Opcional: para ambientes corrosivos conforme la norma ISO-12944 grado C5VH.

La remoción de la tapa de la válvula para inspección y mantenimiento completos deberá ser en línea y no requerirá quitar el trim de control.

La válvula de diluvio y el trim de control deberán estar pre-ensamblados y probados hidráulicamente por una fábrica certificada UL/FM e ISO 9000, 9001.

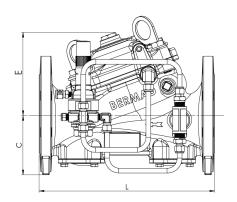
FP-42T-06 Reductoras de presión

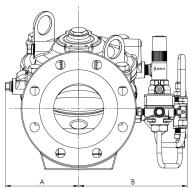
Datos técnicos

Tamaños disponibles:

Embridada- 1½, 2, 2½, 3, 4, 6, 8, 10, 12, 14 & 16" Ranura (Victaulic)- 1½, 2, 2½, 3, 4, 6, 8 & 10"

Presión nominal:

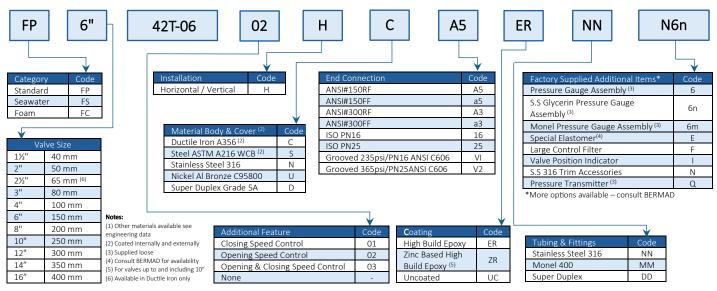

ANSI #150 - 17.2 bar | 250 psi


ANSI #300: de 1½" a 10" - 25 bar | 365 psi ANSI #300 - 12" a 16" - 20 bar | 300 psi Ranura (Victaulic) - 17.2 / 25 bar | 250 / 365 psi

rango de ajuste: 0.5 - 3 bar | 7 - 43 psi

Elastómero:

HTNR - Fabric Reinforced High Temperature Compound - See engineering data



Tamaño de Válvula	L #150 mm in	L ranurado mm in	L #300 mm in	A mm in	B mm in	C mm in	øD in	E mm in	F mm in	G mm in	Peso #150 kg lb	Peso #300 kg lb
DN40 1½"	-	-	-	-	-	-	-	-	-	-	-	-
DN50 2"	205 8.1	205 8.1	-	284 11.2	210 8.3	-	-	-	-	-	11 24.2	-
DN65 2½"	205 8.1	-	-	284 11.2	210 8.3	-	-	-	-	-	11 24.2	1-
DN80 3"	257 10.1	250 9.8	-	300 11.8	215 8.5	-	-	-	-	-	13 28.6	1-
DN100 4"	320 12.6	320 12.6	-	313 12.3	243 9.6	-	-	-	-	-	30 66	1-
DN150 6"	415 16.3	415 16.3	-	341 13.4	315 12.4	-	-	-	-	-	70 154	1-
DN200 8"	500 19.7	500 19.7	-	415 16.3	350 13.8	-	-	-	-	-	128 282	1-
DN250 10"	605 28.7	-	-	443 17.4	382 15	-	-	-	-	-	145 319	[-
DN300 12"	725 28.5	-	-	481 18.9	430 16.9	-	-	-	-	-	323 712	-
DN350 14"	980 38.6	-	980 38.6	242 9.5	656 26	272 10.7	-	441 17.4	-	-	356 784	416 915
DN400 16"	1100 43.3	-	1100 43.3	242 9.5	656 25.8	316 12.5	-	415 16.3	-	-	403 886	523 1151

IMPORTANTE: Las dimensiones del contorno del trim o sus extensiones se refieren a una orientación horizontal y pueden variar según la posición específica de los componentes. Aparte de la dimensión "L", permita una tolerancia de al menos ±15%

Valve Code Designations

