

CONTROLE DE VAZÃO - VÁLVULA DE CONTROLE DE DIFERENÇA DE PRESSÃO (PDCV)

Controle de Vazão - Válvula de Controle de Diferença de Pressão (PDCV)

Modelo FP-400Y-C-06

O modelo BERMAD 400Y-*-06 é uma Válvula de Controle de Diferença de Pressão auto-operada (PDCV) para controle de vazão, projetada especificamente para sistemas avançados de proteção contra incêndio e os mais recentes padrões da indústria.

A 400Y-*-06 utiliza um piloto de detecção diferencial exclusivo para controlar a diferença de pressão entre dois pontos escolhidos, normalmente uma bomba de proporcionamento de espuma.

A válvula pode ser ativada por meio de um sinal elétrico, hidráulico ou pneumático.

Consulte as "Designações de código da válvula" na página 4, na seção Código de Ativação, para especificar a configuração de válvula requerida.

Benefícios e Características

- Segurança e confiabilidade
 - Resposta rápida a mudanças de vazão durante o enchimento da tubulação
 - Design simples, comprovado pelo tempo, com atuação à prova de falhas
 - Fluxo livre de obstáculos e ininterrupto
 - Sem partes mecânicas móveis
 - Vedação de diafragma elastomérico robusto em peça única - tecnologia VRSD
- Alto desempenho
 - Corpo tipo Y reto de passagem plena
 - Eficiência de vazão muito alta
 - Aprovado para PN25 / 365 psi
- Projetado especificamente para proteção contra incêndio
 - Comprimento face a face padronizado conforme ISO 5752 EN 558-1
 - Atende aos requisitos das normas da indústria
- Manutenção rápida e fácil
 - Manutenção em linha
 - Remoção rápida e fácil da tampa

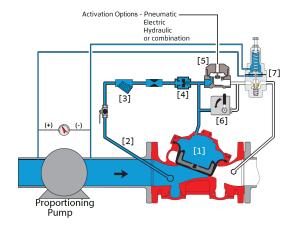
Aprovações

UL-Listed Válvulas de Controle de Água para Sistemas Especiais, Tipo Dilúvio (VLFT) Diâmetros 11/2" - 16"

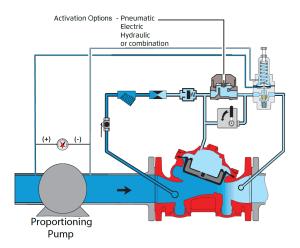
Det Norske Veritas Tipo de aprovação

ABS American Bureau of Shipping Tipo de aprovação

Lloyd's Register Tipo de aprovação

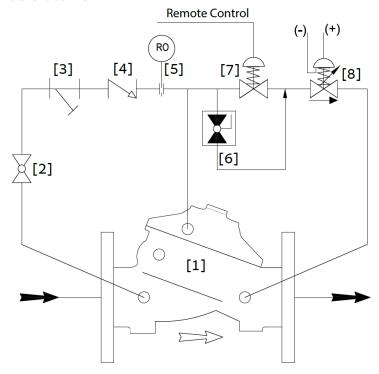

Aplicações Típicas

- Aplicações de espuma
- Regulação de vazão para bombas de proporcionamento de espuma
- Controle de fluxo da bomba dosadora
- Controle remoto


Características Adicionais

- Indicadores de posição chave fim de curso
- Indicador de Posição da Válvula
- Compatibilidade com água do mar
- Controle de velocidade de abertura e/ou fechamento

Operação


Válvula Fechada (condições normais)

Válvula Aberta (condições de incêndio)

O BERMAD 400Y é mantido fechado pela pressão da água na câmara de controle da válvula principal [1]. Ao liberar a pressão da câmara de controle, a válvula se abrirá. Em condições NORMAIS, a pressão da água é fornecida à câmara de controle [1] através da linha de enchimento [2] e do filtro [3], sendo então retida na câmara de controle por uma válvula de retenção [4], pela válvula piloto relé fechada [5] e pela válvula de sobreposição de abertura manual [6]. A pressão da água retida na câmara de controle da válvula principal mantém o diafragma contra o assento da válvula, vedando-a de forma estanque e mantendo os tubos do sistema secos. Em condições de INCÊNDIO, a pressão da água é liberada da câmara de controle, seja pela abertura manual [6], seja pela abertura da válvula piloto relé. Uma vez aberta, o piloto diferencial de pressão [7] irá modular a válvula principal para manter uma pressão diferencial pré-ajustada entre os pontos de detecção do piloto, mantendo assim o fluxo abaixo do máximo permitido. Quando equipada com reinicialização local, a válvula permanecerá aberta até ser reinicializada manual e localmente.

P&ID do Sistema

	Componentes
1	Válvula Bermad 400Y
2	Válvula de esfera de escorva
3	Filtro de escorva
4	Válvula de retenção
5	Orifício de Restrição
6	Abertura Manual
7	Válvula Relé
8	Válvula Piloto de Diferença de Pressão

Válvulas Dilúvio

Instalação do Sistema

A detecção de pressão diferencial do 400Y-*-06 permite a regulagem precisa de vazão necessária para dosagem e proporcionamento de espuma.

A ativação da válvula pode ser remota ou local, elétrica, pneumática ou hidráulica.

Proporcionamento de Concentrado de Espuma

O modelo BERMAD 400Y-*-06 é ideal para a dosagem de concentrado de espuma (Fig. 1), regulando a pressão diferencial entre a espuma e a água para garantir uma proporção precisa de espuma para água, independentemente das variações de vazão ou pressão da água.

Controle de Dosagem de Fluxo

- Na Fig. 2, a 400Y-*-06 está instalada para evitar fluxo excessivo, protegendo a bomba dosadora contra danos por transbordamento frequentemente ocorridos durante a partida da bomba e durante o enchimento inicial das tubulações do sistema.
- Ao detectar a diferença de pressão através da bomba, a 400Y-*-06 irá modular, evitando que o fluxo ultrapasse o máximo recomendado.
- Quando a pressão diferencial está abaixo do máximo pré-ajustado, a 400Y-*-06 abre completamente. A excepcional eficiência de vazão da 400Y-*-06 garante a confiabilidade e total funcionalidade de desempenho do sistema.

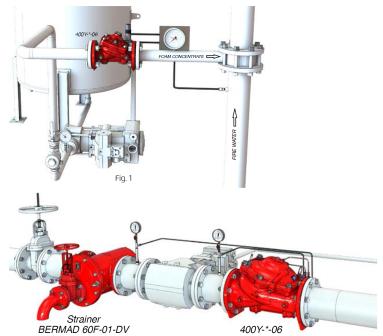


Fig. 2

Especificações Sugeridas

A válvula de controle de pressão deve ser uma válvula tipo Y, passagem plena, classificada para 25 bar/365 psi, listada UL. A válvula deve possuir caminho de fluxo desobstruído, sem guia de haste ou nervuras de suporte. A atuação da válvula deve ser realizada por um diafragma de peça única, rolante, ligado a um disco de vedação radial robusto. O conjunto do diafragma deve ser a única peça móvel. A válvula deve incluir um filtro tipo Y, uma abertura manual local e deve estar equipada com um indicador linear de posição da válvula. A remoção da tampa da válvula para inspeção ou manutenção não deve exigir a remoção do trim de controle. A válvula e todo o seu trim de controle devem ser fornecidos pré-montados e testados hidraulicamente por uma fábrica certificada conforme as normas ISO 9000 e 9001.

Válvulas Dilúvio

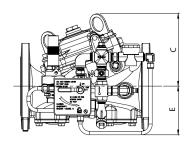
Dados Técnicos

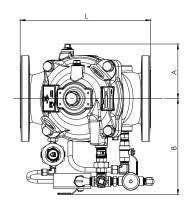
Tamanhos Disponíveis:

Flangeada- 1½, 2, 2½, 3, 4, 6, 8, 10, 12, 14 & 16" Ranhurada- 1½, 2, 2½, 3, 4, 6, 8 & 10"

Classe de Pressão:

ANSI#150 - 17.2 bar | 250 psi

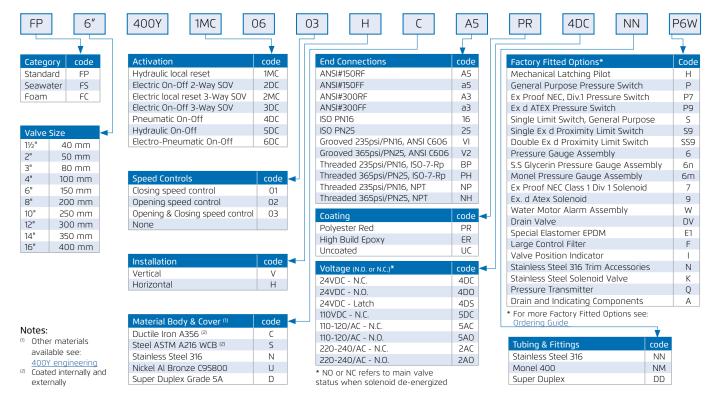

ANSI#300 - 1½" até 10" - 25 bar | 365 psi ANSI#300 - 12" até 16" - 20 bar | 300 psi


Ranhurada - 17.2 bar | 250 psi

Faixa de ajuste: 0.5 - 3 bar | 7 - 43 psi

Elastômero:

HTNR - Fabric Reinforced High Temperature Compound - See engineering data



Tamanho da Válvula	L #150 mm in	Ranhura em L mm in	L #300 mm in	A mm in	B mm in	C mm in	øD in	E mm in	F mm in	G mm in	Peso #150 kg lb	Peso #300 kg lb
DN40 1½"	230 9.1	230 9.1	230 9.1	77.5 3	155 6.1	64 2.5	-	120 4.7	-	-	18 39	21 44
DN50 2"	230 9.1	230 9.1	238 9.4	77.5 3	155 6.1	11 3	-	120 4.7	-	-	20 43	21 47
DN65 2½"	235 9.3	235 9.3	241 9.5	1-	1-	-	-	-	-	-	25 55	27 59
DN80 3"	310 12.2	310 12.2	326 12.8	100 4	251 9.9	106 4.2	-	146 5.8	-	-	34 75	39 76
DN100 4"	350 13.8	350 13.8	368 14.5	115 4.5	266 10.5	121 4.8	-	158 6.2	-	-	44 96	51 102
DN150 6"	480 18.9	480 18.9	506 19.9	140 5.5	372 14.7	140 5.5	-	228 9	-	-	87 192	107 235
DN200 8"	600 23.6	600 23.6	626 24.7	172 6.8	490 19.3	172 6.8	-	295 11.7	-	-	150 331	170 400
DN250 10"	730 28.7	730 28.7	730 28.7	204 8	490 19.3	204 8	-	296 11.7	-	-	180 397	216 477
DN300 12"	850 33.5	-	888 35	242 9.5	656 25.8	247 9.7	-	4.41 17.4	-	-	323 712	363 822
DN350 14"	980 38.6	-	980 38.6	242 9.5	656 25.8	272 10.7	-	441 17.4	-	-	356 784	428 943
DN400 16"	1100 43.3	-	1100 43.3	242 9.5	656 25.8	316 12.4	-	415 16.3	-	-	403 886	523 1150

IMPORTANTE: As dimensões do envelope ou extensão do conjunto referem-se à orientação vertical e podem variar conforme o posicionamento específico dos componentes – Exceto para a dimensão "L", permita uma tolerância de pelo menos ±15%

Valve Code Designations

www.bermad.com